fuzz coverage

Coverage Report

Created: 2025-09-17 22:41

/Users/eugenesiegel/btc/bitcoin/src/support/lockedpool.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2016-present The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#include <support/lockedpool.h>
6
#include <support/cleanse.h>
7
8
#ifdef WIN32
9
#include <windows.h>
10
#else
11
#include <sys/mman.h>
12
#include <sys/resource.h>
13
#include <unistd.h>
14
#endif
15
16
#include <algorithm>
17
#include <limits>
18
#include <stdexcept>
19
#include <utility>
20
#ifdef ARENA_DEBUG
21
#include <iomanip>
22
#include <iostream>
23
#endif
24
25
LockedPoolManager* LockedPoolManager::_instance = nullptr;
26
27
/*******************************************************************************/
28
// Utilities
29
//
30
/** Align up to power of 2 */
31
static inline size_t align_up(size_t x, size_t align)
32
38.8k
{
33
38.8k
    return (x + align - 1) & ~(align - 1);
34
38.8k
}
35
36
/*******************************************************************************/
37
// Implementation: Arena
38
39
Arena::Arena(void *base_in, size_t size_in, size_t alignment_in):
40
0
    base(base_in), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in)
41
0
{
42
    // Start with one free chunk that covers the entire arena
43
0
    auto it = size_to_free_chunk.emplace(size_in, base);
44
0
    chunks_free.emplace(base, it);
45
0
    chunks_free_end.emplace(static_cast<char*>(base) + size_in, it);
46
0
}
47
48
0
Arena::~Arena() = default;
49
50
void* Arena::alloc(size_t size)
51
38.8k
{
52
    // Round to next multiple of alignment
53
38.8k
    size = align_up(size, alignment);
54
55
    // Don't handle zero-sized chunks
56
38.8k
    if (size == 0)
57
0
        return nullptr;
58
59
    // Pick a large enough free-chunk. Returns an iterator pointing to the first element that is not less than key.
60
    // This allocation strategy is best-fit. According to "Dynamic Storage Allocation: A Survey and Critical Review",
61
    // Wilson et. al. 1995, https://www.scs.stanford.edu/14wi-cs140/sched/readings/wilson.pdf, best-fit and first-fit
62
    // policies seem to work well in practice.
63
38.8k
    auto size_ptr_it = size_to_free_chunk.lower_bound(size);
64
38.8k
    if (size_ptr_it == size_to_free_chunk.end())
65
0
        return nullptr;
66
67
    // Create the used-chunk, taking its space from the end of the free-chunk
68
38.8k
    const size_t size_remaining = size_ptr_it->first - size;
69
38.8k
    char* const free_chunk = static_cast<char*>(size_ptr_it->second);
70
38.8k
    auto allocated = chunks_used.emplace(free_chunk + size_remaining, size).first;
71
38.8k
    chunks_free_end.erase(free_chunk + size_ptr_it->first);
72
38.8k
    if (size_ptr_it->first == size) {
73
        // whole chunk is used up
74
0
        chunks_free.erase(size_ptr_it->second);
75
38.8k
    } else {
76
        // still some memory left in the chunk
77
38.8k
        auto it_remaining = size_to_free_chunk.emplace(size_remaining, size_ptr_it->second);
78
38.8k
        chunks_free[size_ptr_it->second] = it_remaining;
79
38.8k
        chunks_free_end.emplace(free_chunk + size_remaining, it_remaining);
80
38.8k
    }
81
38.8k
    size_to_free_chunk.erase(size_ptr_it);
82
83
38.8k
    return allocated->first;
84
38.8k
}
85
86
void Arena::free(void *ptr)
87
38.8k
{
88
    // Freeing the nullptr pointer is OK.
89
38.8k
    if (ptr == nullptr) {
90
0
        return;
91
0
    }
92
93
    // Remove chunk from used map
94
38.8k
    auto i = chunks_used.find(ptr);
95
38.8k
    if (i == chunks_used.end()) {
96
0
        throw std::runtime_error("Arena: invalid or double free");
97
0
    }
98
38.8k
    auto freed = std::make_pair(static_cast<char*>(i->first), i->second);
99
38.8k
    chunks_used.erase(i);
100
101
    // coalesce freed with previous chunk
102
38.8k
    auto prev = chunks_free_end.find(freed.first);
103
38.8k
    if (prev != chunks_free_end.end()) {
104
38.8k
        freed.first -= prev->second->first;
105
38.8k
        freed.second += prev->second->first;
106
38.8k
        size_to_free_chunk.erase(prev->second);
107
38.8k
        chunks_free_end.erase(prev);
108
38.8k
    }
109
110
    // coalesce freed with chunk after freed
111
38.8k
    auto next = chunks_free.find(freed.first + freed.second);
112
38.8k
    if (next != chunks_free.end()) {
113
0
        freed.second += next->second->first;
114
0
        size_to_free_chunk.erase(next->second);
115
0
        chunks_free.erase(next);
116
0
    }
117
118
    // Add/set space with coalesced free chunk
119
38.8k
    auto it = size_to_free_chunk.emplace(freed.second, freed.first);
120
38.8k
    chunks_free[freed.first] = it;
121
38.8k
    chunks_free_end[freed.first + freed.second] = it;
122
38.8k
}
123
124
Arena::Stats Arena::stats() const
125
0
{
126
0
    Arena::Stats r{ 0, 0, 0, chunks_used.size(), chunks_free.size() };
127
0
    for (const auto& chunk: chunks_used)
128
0
        r.used += chunk.second;
129
0
    for (const auto& chunk: chunks_free)
130
0
        r.free += chunk.second->first;
131
0
    r.total = r.used + r.free;
132
0
    return r;
133
0
}
134
135
#ifdef ARENA_DEBUG
136
static void printchunk(void* base, size_t sz, bool used) {
137
    std::cout <<
138
        "0x" << std::hex << std::setw(16) << std::setfill('0') << base <<
139
        " 0x" << std::hex << std::setw(16) << std::setfill('0') << sz <<
140
        " 0x" << used << std::endl;
141
}
142
void Arena::walk() const
143
{
144
    for (const auto& chunk: chunks_used)
145
        printchunk(chunk.first, chunk.second, true);
146
    std::cout << std::endl;
147
    for (const auto& chunk: chunks_free)
148
        printchunk(chunk.first, chunk.second->first, false);
149
    std::cout << std::endl;
150
}
151
#endif
152
153
/*******************************************************************************/
154
// Implementation: Win32LockedPageAllocator
155
156
#ifdef WIN32
157
/** LockedPageAllocator specialized for Windows.
158
 */
159
class Win32LockedPageAllocator: public LockedPageAllocator
160
{
161
public:
162
    Win32LockedPageAllocator();
163
    void* AllocateLocked(size_t len, bool *lockingSuccess) override;
164
    void FreeLocked(void* addr, size_t len) override;
165
    size_t GetLimit() override;
166
private:
167
    size_t page_size;
168
};
169
170
Win32LockedPageAllocator::Win32LockedPageAllocator()
171
{
172
    // Determine system page size in bytes
173
    SYSTEM_INFO sSysInfo;
174
    GetSystemInfo(&sSysInfo);
175
    page_size = sSysInfo.dwPageSize;
176
}
177
void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
178
{
179
    len = align_up(len, page_size);
180
    void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
181
    if (addr) {
182
        // VirtualLock is used to attempt to keep keying material out of swap. Note
183
        // that it does not provide this as a guarantee, but, in practice, memory
184
        // that has been VirtualLock'd almost never gets written to the pagefile
185
        // except in rare circumstances where memory is extremely low.
186
        *lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0;
187
    }
188
    return addr;
189
}
190
void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len)
191
{
192
    len = align_up(len, page_size);
193
    memory_cleanse(addr, len);
194
    VirtualUnlock(const_cast<void*>(addr), len);
195
}
196
197
size_t Win32LockedPageAllocator::GetLimit()
198
{
199
    size_t min, max;
200
    if(GetProcessWorkingSetSize(GetCurrentProcess(), &min, &max) != 0) {
201
        return min;
202
    }
203
    return std::numeric_limits<size_t>::max();
204
}
205
#endif
206
207
/*******************************************************************************/
208
// Implementation: PosixLockedPageAllocator
209
210
#ifndef WIN32
211
/** LockedPageAllocator specialized for OSes that don't try to be
212
 * special snowflakes.
213
 */
214
class PosixLockedPageAllocator: public LockedPageAllocator
215
{
216
public:
217
    PosixLockedPageAllocator();
218
    void* AllocateLocked(size_t len, bool *lockingSuccess) override;
219
    void FreeLocked(void* addr, size_t len) override;
220
    size_t GetLimit() override;
221
private:
222
    size_t page_size;
223
};
224
225
PosixLockedPageAllocator::PosixLockedPageAllocator()
226
0
{
227
    // Determine system page size in bytes
228
#if defined(PAGESIZE) // defined in limits.h
229
    page_size = PAGESIZE;
230
#else                   // assume some POSIX OS
231
0
    page_size = sysconf(_SC_PAGESIZE);
232
0
#endif
233
0
}
234
235
void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
236
0
{
237
0
    void *addr;
238
0
    len = align_up(len, page_size);
239
0
    addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
240
0
    if (addr == MAP_FAILED) {
241
0
        return nullptr;
242
0
    }
243
0
    if (addr) {
244
0
        *lockingSuccess = mlock(addr, len) == 0;
245
#if defined(MADV_DONTDUMP) // Linux
246
        madvise(addr, len, MADV_DONTDUMP);
247
#elif defined(MADV_NOCORE) // FreeBSD
248
        madvise(addr, len, MADV_NOCORE);
249
#endif
250
0
    }
251
0
    return addr;
252
0
}
253
void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len)
254
0
{
255
0
    len = align_up(len, page_size);
256
0
    memory_cleanse(addr, len);
257
0
    munlock(addr, len);
258
0
    munmap(addr, len);
259
0
}
260
size_t PosixLockedPageAllocator::GetLimit()
261
0
{
262
0
#ifdef RLIMIT_MEMLOCK
263
0
    struct rlimit rlim;
264
0
    if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
265
0
        if (rlim.rlim_cur != RLIM_INFINITY) {
266
0
            return rlim.rlim_cur;
267
0
        }
268
0
    }
269
0
#endif
270
0
    return std::numeric_limits<size_t>::max();
271
0
}
272
#endif
273
274
/*******************************************************************************/
275
// Implementation: LockedPool
276
277
LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in)
278
0
    : allocator(std::move(allocator_in)), lf_cb(lf_cb_in)
279
0
{
280
0
}
281
282
0
LockedPool::~LockedPool() = default;
283
284
void* LockedPool::alloc(size_t size)
285
38.8k
{
286
38.8k
    std::lock_guard<std::mutex> lock(mutex);
287
288
    // Don't handle impossible sizes
289
38.8k
    if (size == 0 || size > ARENA_SIZE)
290
0
        return nullptr;
291
292
    // Try allocating from each current arena
293
38.8k
    for (auto &arena: arenas) {
294
38.8k
        void *addr = arena.alloc(size);
295
38.8k
        if (addr) {
296
38.8k
            return addr;
297
38.8k
        }
298
38.8k
    }
299
    // If that fails, create a new one
300
0
    if (new_arena(ARENA_SIZE, ARENA_ALIGN)) {
301
0
        return arenas.back().alloc(size);
302
0
    }
303
0
    return nullptr;
304
0
}
305
306
void LockedPool::free(void *ptr)
307
38.8k
{
308
38.8k
    std::lock_guard<std::mutex> lock(mutex);
309
    // TODO we can do better than this linear search by keeping a map of arena
310
    // extents to arena, and looking up the address.
311
38.8k
    for (auto &arena: arenas) {
312
38.8k
        if (arena.addressInArena(ptr)) {
313
38.8k
            arena.free(ptr);
314
38.8k
            return;
315
38.8k
        }
316
38.8k
    }
317
0
    throw std::runtime_error("LockedPool: invalid address not pointing to any arena");
318
38.8k
}
319
320
LockedPool::Stats LockedPool::stats() const
321
0
{
322
0
    std::lock_guard<std::mutex> lock(mutex);
323
0
    LockedPool::Stats r{0, 0, 0, cumulative_bytes_locked, 0, 0};
324
0
    for (const auto &arena: arenas) {
325
0
        Arena::Stats i = arena.stats();
326
0
        r.used += i.used;
327
0
        r.free += i.free;
328
0
        r.total += i.total;
329
0
        r.chunks_used += i.chunks_used;
330
0
        r.chunks_free += i.chunks_free;
331
0
    }
332
0
    return r;
333
0
}
334
335
bool LockedPool::new_arena(size_t size, size_t align)
336
0
{
337
0
    bool locked;
338
    // If this is the first arena, handle this specially: Cap the upper size
339
    // by the process limit. This makes sure that the first arena will at least
340
    // be locked. An exception to this is if the process limit is 0:
341
    // in this case no memory can be locked at all so we'll skip past this logic.
342
0
    if (arenas.empty()) {
343
0
        size_t limit = allocator->GetLimit();
344
0
        if (limit > 0) {
345
0
            size = std::min(size, limit);
346
0
        }
347
0
    }
348
0
    void *addr = allocator->AllocateLocked(size, &locked);
349
0
    if (!addr) {
350
0
        return false;
351
0
    }
352
0
    if (locked) {
353
0
        cumulative_bytes_locked += size;
354
0
    } else if (lf_cb) { // Call the locking-failed callback if locking failed
355
0
        if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed.
356
0
            allocator->FreeLocked(addr, size);
357
0
            return false;
358
0
        }
359
0
    }
360
0
    arenas.emplace_back(allocator.get(), addr, size, align);
361
0
    return true;
362
0
}
363
364
LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in):
365
0
    Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in)
366
0
{
367
0
}
368
LockedPool::LockedPageArena::~LockedPageArena()
369
0
{
370
0
    allocator->FreeLocked(base, size);
371
0
}
372
373
/*******************************************************************************/
374
// Implementation: LockedPoolManager
375
//
376
LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator_in):
377
0
    LockedPool(std::move(allocator_in), &LockedPoolManager::LockingFailed)
378
0
{
379
0
}
380
381
bool LockedPoolManager::LockingFailed()
382
0
{
383
    // TODO: log something but how? without including util.h
384
0
    return true;
385
0
}
386
387
void LockedPoolManager::CreateInstance()
388
0
{
389
    // Using a local static instance guarantees that the object is initialized
390
    // when it's first needed and also deinitialized after all objects that use
391
    // it are done with it.  I can think of one unlikely scenario where we may
392
    // have a static deinitialization order/problem, but the check in
393
    // LockedPoolManagerBase's destructor helps us detect if that ever happens.
394
#ifdef WIN32
395
    std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator());
396
#else
397
0
    std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator());
398
0
#endif
399
0
    static LockedPoolManager instance(std::move(allocator));
400
0
    LockedPoolManager::_instance = &instance;
401
0
}