/Users/eugenesiegel/btc/bitcoin/src/key.cpp
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | // Copyright (c) 2009-present The Bitcoin Core developers | 
| 2 |  | // Copyright (c) 2017 The Zcash developers | 
| 3 |  | // Distributed under the MIT software license, see the accompanying | 
| 4 |  | // file COPYING or http://www.opensource.org/licenses/mit-license.php. | 
| 5 |  |  | 
| 6 |  | #include <key.h> | 
| 7 |  |  | 
| 8 |  | #include <crypto/common.h> | 
| 9 |  | #include <crypto/hmac_sha512.h> | 
| 10 |  | #include <hash.h> | 
| 11 |  | #include <random.h> | 
| 12 |  |  | 
| 13 |  | #include <secp256k1.h> | 
| 14 |  | #include <secp256k1_ellswift.h> | 
| 15 |  | #include <secp256k1_extrakeys.h> | 
| 16 |  | #include <secp256k1_recovery.h> | 
| 17 |  | #include <secp256k1_schnorrsig.h> | 
| 18 |  |  | 
| 19 |  | static secp256k1_context* secp256k1_context_sign = nullptr; | 
| 20 |  |  | 
| 21 |  | /** These functions are taken from the libsecp256k1 distribution and are very ugly. */ | 
| 22 |  |  | 
| 23 |  | /** | 
| 24 |  |  * This parses a format loosely based on a DER encoding of the ECPrivateKey type from | 
| 25 |  |  * section C.4 of SEC 1 <https://www.secg.org/sec1-v2.pdf>, with the following caveats: | 
| 26 |  |  * | 
| 27 |  |  * * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not | 
| 28 |  |  *   required to be encoded as one octet if it is less than 256, as DER would require. | 
| 29 |  |  * * The octet-length of the SEQUENCE must not be greater than the remaining | 
| 30 |  |  *   length of the key encoding, but need not match it (i.e. the encoding may contain | 
| 31 |  |  *   junk after the encoded SEQUENCE). | 
| 32 |  |  * * The privateKey OCTET STRING is zero-filled on the left to 32 octets. | 
| 33 |  |  * * Anything after the encoding of the privateKey OCTET STRING is ignored, whether | 
| 34 |  |  *   or not it is validly encoded DER. | 
| 35 |  |  * | 
| 36 |  |  * out32 must point to an output buffer of length at least 32 bytes. | 
| 37 |  |  */ | 
| 38 | 0 | int ec_seckey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen) { | 
| 39 | 0 |     const unsigned char *end = seckey + seckeylen; | 
| 40 | 0 |     memset(out32, 0, 32); | 
| 41 |  |     /* sequence header */ | 
| 42 | 0 |     if (end - seckey < 1 || *seckey != 0x30u) { | 
| 43 | 0 |         return 0; | 
| 44 | 0 |     } | 
| 45 | 0 |     seckey++; | 
| 46 |  |     /* sequence length constructor */ | 
| 47 | 0 |     if (end - seckey < 1 || !(*seckey & 0x80u)) { | 
| 48 | 0 |         return 0; | 
| 49 | 0 |     } | 
| 50 | 0 |     ptrdiff_t lenb = *seckey & ~0x80u; seckey++; | 
| 51 | 0 |     if (lenb < 1 || lenb > 2) { | 
| 52 | 0 |         return 0; | 
| 53 | 0 |     } | 
| 54 | 0 |     if (end - seckey < lenb) { | 
| 55 | 0 |         return 0; | 
| 56 | 0 |     } | 
| 57 |  |     /* sequence length */ | 
| 58 | 0 |     ptrdiff_t len = seckey[lenb-1] | (lenb > 1 ? seckey[lenb-2] << 8 : 0u); | 
| 59 | 0 |     seckey += lenb; | 
| 60 | 0 |     if (end - seckey < len) { | 
| 61 | 0 |         return 0; | 
| 62 | 0 |     } | 
| 63 |  |     /* sequence element 0: version number (=1) */ | 
| 64 | 0 |     if (end - seckey < 3 || seckey[0] != 0x02u || seckey[1] != 0x01u || seckey[2] != 0x01u) { | 
| 65 | 0 |         return 0; | 
| 66 | 0 |     } | 
| 67 | 0 |     seckey += 3; | 
| 68 |  |     /* sequence element 1: octet string, up to 32 bytes */ | 
| 69 | 0 |     if (end - seckey < 2 || seckey[0] != 0x04u) { | 
| 70 | 0 |         return 0; | 
| 71 | 0 |     } | 
| 72 | 0 |     ptrdiff_t oslen = seckey[1]; | 
| 73 | 0 |     seckey += 2; | 
| 74 | 0 |     if (oslen > 32 || end - seckey < oslen) { | 
| 75 | 0 |         return 0; | 
| 76 | 0 |     } | 
| 77 | 0 |     memcpy(out32 + (32 - oslen), seckey, oslen); | 
| 78 | 0 |     if (!secp256k1_ec_seckey_verify(ctx, out32)) { | 
| 79 | 0 |         memset(out32, 0, 32); | 
| 80 | 0 |         return 0; | 
| 81 | 0 |     } | 
| 82 | 0 |     return 1; | 
| 83 | 0 | } | 
| 84 |  |  | 
| 85 |  | /** | 
| 86 |  |  * This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1 | 
| 87 |  |  * <https://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are | 
| 88 |  |  * included. | 
| 89 |  |  * | 
| 90 |  |  * seckey must point to an output buffer of length at least CKey::SIZE bytes. | 
| 91 |  |  * seckeylen must initially be set to the size of the seckey buffer. Upon return it | 
| 92 |  |  * will be set to the number of bytes used in the buffer. | 
| 93 |  |  * key32 must point to a 32-byte raw private key. | 
| 94 |  |  */ | 
| 95 | 0 | int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed) { | 
| 96 | 0 |     assert(*seckeylen >= CKey::SIZE); | 
| 97 | 0 |     secp256k1_pubkey pubkey; | 
| 98 | 0 |     size_t pubkeylen = 0; | 
| 99 | 0 |     if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) { | 
| 100 | 0 |         *seckeylen = 0; | 
| 101 | 0 |         return 0; | 
| 102 | 0 |     } | 
| 103 | 0 |     if (compressed) { | 
| 104 | 0 |         static const unsigned char begin[] = { | 
| 105 | 0 |             0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20 | 
| 106 | 0 |         }; | 
| 107 | 0 |         static const unsigned char middle[] = { | 
| 108 | 0 |             0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, | 
| 109 | 0 |             0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | 
| 110 | 0 |             0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | 
| 111 | 0 |             0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, | 
| 112 | 0 |             0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, | 
| 113 | 0 |             0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, | 
| 114 | 0 |             0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | 
| 115 | 0 |             0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, | 
| 116 | 0 |             0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00 | 
| 117 | 0 |         }; | 
| 118 | 0 |         unsigned char *ptr = seckey; | 
| 119 | 0 |         memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); | 
| 120 | 0 |         memcpy(ptr, key32, 32); ptr += 32; | 
| 121 | 0 |         memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); | 
| 122 | 0 |         pubkeylen = CPubKey::COMPRESSED_SIZE; | 
| 123 | 0 |         secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED); | Line | Count | Source |  | 224 | 0 | #define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION) | Line | Count | Source |  | 205 | 0 | #define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1) | 
 | #define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION) | Line | Count | Source |  | 210 | 0 | #define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8) | 
 | 
 | 
| 124 | 0 |         ptr += pubkeylen; | 
| 125 | 0 |         *seckeylen = ptr - seckey; | 
| 126 | 0 |         assert(*seckeylen == CKey::COMPRESSED_SIZE); | 
| 127 | 0 |     } else { | 
| 128 | 0 |         static const unsigned char begin[] = { | 
| 129 | 0 |             0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20 | 
| 130 | 0 |         }; | 
| 131 | 0 |         static const unsigned char middle[] = { | 
| 132 | 0 |             0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48, | 
| 133 | 0 |             0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | 
| 134 | 0 |             0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | 
| 135 | 0 |             0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04, | 
| 136 | 0 |             0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87, | 
| 137 | 0 |             0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8, | 
| 138 | 0 |             0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11, | 
| 139 | 0 |             0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10, | 
| 140 | 0 |             0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, | 
| 141 | 0 |             0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E, | 
| 142 | 0 |             0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00 | 
| 143 | 0 |         }; | 
| 144 | 0 |         unsigned char *ptr = seckey; | 
| 145 | 0 |         memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin); | 
| 146 | 0 |         memcpy(ptr, key32, 32); ptr += 32; | 
| 147 | 0 |         memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle); | 
| 148 | 0 |         pubkeylen = CPubKey::SIZE; | 
| 149 | 0 |         secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED); | Line | Count | Source |  | 225 | 0 | #define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION) | Line | Count | Source |  | 205 | 0 | #define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1) | 
 | 
 | 
| 150 | 0 |         ptr += pubkeylen; | 
| 151 | 0 |         *seckeylen = ptr - seckey; | 
| 152 | 0 |         assert(*seckeylen == CKey::SIZE); | 
| 153 | 0 |     } | 
| 154 | 0 |     return 1; | 
| 155 | 0 | } | 
| 156 |  |  | 
| 157 | 0 | bool CKey::Check(const unsigned char *vch) { | 
| 158 | 0 |     return secp256k1_ec_seckey_verify(secp256k1_context_static, vch); | 
| 159 | 0 | } | 
| 160 |  |  | 
| 161 | 0 | void CKey::MakeNewKey(bool fCompressedIn) { | 
| 162 | 0 |     MakeKeyData(); | 
| 163 | 0 |     do { | 
| 164 | 0 |         GetStrongRandBytes(*keydata); | 
| 165 | 0 |     } while (!Check(keydata->data())); | 
| 166 | 0 |     fCompressed = fCompressedIn; | 
| 167 | 0 | } | 
| 168 |  |  | 
| 169 | 0 | CPrivKey CKey::GetPrivKey() const { | 
| 170 | 0 |     assert(keydata); | 
| 171 | 0 |     CPrivKey seckey; | 
| 172 | 0 |     int ret; | 
| 173 | 0 |     size_t seckeylen; | 
| 174 | 0 |     seckey.resize(SIZE); | 
| 175 | 0 |     seckeylen = SIZE; | 
| 176 | 0 |     ret = ec_seckey_export_der(secp256k1_context_sign, seckey.data(), &seckeylen, UCharCast(begin()), fCompressed); | 
| 177 | 0 |     assert(ret); | 
| 178 | 0 |     seckey.resize(seckeylen); | 
| 179 | 0 |     return seckey; | 
| 180 | 0 | } | 
| 181 |  |  | 
| 182 | 0 | CPubKey CKey::GetPubKey() const { | 
| 183 | 0 |     assert(keydata); | 
| 184 | 0 |     secp256k1_pubkey pubkey; | 
| 185 | 0 |     size_t clen = CPubKey::SIZE; | 
| 186 | 0 |     CPubKey result; | 
| 187 | 0 |     int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, UCharCast(begin())); | 
| 188 | 0 |     assert(ret); | 
| 189 | 0 |     secp256k1_ec_pubkey_serialize(secp256k1_context_static, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED); | Line | Count | Source |  | 224 | 0 | #define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION) | Line | Count | Source |  | 205 | 0 | #define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1) | 
 | #define SECP256K1_EC_COMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION | SECP256K1_FLAGS_BIT_COMPRESSION) | Line | Count | Source |  | 210 | 0 | #define SECP256K1_FLAGS_BIT_COMPRESSION (1 << 8) | 
 | 
 |     secp256k1_ec_pubkey_serialize(secp256k1_context_static, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED); | Line | Count | Source |  | 225 | 0 | #define SECP256K1_EC_UNCOMPRESSED (SECP256K1_FLAGS_TYPE_COMPRESSION) | Line | Count | Source |  | 205 | 0 | #define SECP256K1_FLAGS_TYPE_COMPRESSION (1 << 1) | 
 | 
 | 
| 190 | 0 |     assert(result.size() == clen); | 
| 191 | 0 |     assert(result.IsValid()); | 
| 192 | 0 |     return result; | 
| 193 | 0 | } | 
| 194 |  |  | 
| 195 |  | // Check that the sig has a low R value and will be less than 71 bytes | 
| 196 |  | bool SigHasLowR(const secp256k1_ecdsa_signature* sig) | 
| 197 | 0 | { | 
| 198 | 0 |     unsigned char compact_sig[64]; | 
| 199 | 0 |     secp256k1_ecdsa_signature_serialize_compact(secp256k1_context_static, compact_sig, sig); | 
| 200 |  |  | 
| 201 |  |     // In DER serialization, all values are interpreted as big-endian, signed integers. The highest bit in the integer indicates | 
| 202 |  |     // its signed-ness; 0 is positive, 1 is negative. When the value is interpreted as a negative integer, it must be converted | 
| 203 |  |     // to a positive value by prepending a 0x00 byte so that the highest bit is 0. We can avoid this prepending by ensuring that | 
| 204 |  |     // our highest bit is always 0, and thus we must check that the first byte is less than 0x80. | 
| 205 | 0 |     return compact_sig[0] < 0x80; | 
| 206 | 0 | } | 
| 207 |  |  | 
| 208 | 0 | bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool grind, uint32_t test_case) const { | 
| 209 | 0 |     if (!keydata) | 
| 210 | 0 |         return false; | 
| 211 | 0 |     vchSig.resize(CPubKey::SIGNATURE_SIZE); | 
| 212 | 0 |     size_t nSigLen = CPubKey::SIGNATURE_SIZE; | 
| 213 | 0 |     unsigned char extra_entropy[32] = {0}; | 
| 214 | 0 |     WriteLE32(extra_entropy, test_case); | 
| 215 | 0 |     secp256k1_ecdsa_signature sig; | 
| 216 | 0 |     uint32_t counter = 0; | 
| 217 | 0 |     int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), UCharCast(begin()), secp256k1_nonce_function_rfc6979, (!grind && test_case) ? extra_entropy : nullptr); | 
| 218 |  |  | 
| 219 |  |     // Grind for low R | 
| 220 | 0 |     while (ret && !SigHasLowR(&sig) && grind) { | 
| 221 | 0 |         WriteLE32(extra_entropy, ++counter); | 
| 222 | 0 |         ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), UCharCast(begin()), secp256k1_nonce_function_rfc6979, extra_entropy); | 
| 223 | 0 |     } | 
| 224 | 0 |     assert(ret); | 
| 225 | 0 |     secp256k1_ecdsa_signature_serialize_der(secp256k1_context_static, vchSig.data(), &nSigLen, &sig); | 
| 226 | 0 |     vchSig.resize(nSigLen); | 
| 227 |  |     // Additional verification step to prevent using a potentially corrupted signature | 
| 228 | 0 |     secp256k1_pubkey pk; | 
| 229 | 0 |     ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pk, UCharCast(begin())); | 
| 230 | 0 |     assert(ret); | 
| 231 | 0 |     ret = secp256k1_ecdsa_verify(secp256k1_context_static, &sig, hash.begin(), &pk); | 
| 232 | 0 |     assert(ret); | 
| 233 | 0 |     return true; | 
| 234 | 0 | } | 
| 235 |  |  | 
| 236 | 0 | bool CKey::VerifyPubKey(const CPubKey& pubkey) const { | 
| 237 | 0 |     if (pubkey.IsCompressed() != fCompressed) { | 
| 238 | 0 |         return false; | 
| 239 | 0 |     } | 
| 240 | 0 |     unsigned char rnd[8]; | 
| 241 | 0 |     std::string str = "Bitcoin key verification\n"; | 
| 242 | 0 |     GetRandBytes(rnd); | 
| 243 | 0 |     uint256 hash{Hash(str, rnd)}; | 
| 244 | 0 |     std::vector<unsigned char> vchSig; | 
| 245 | 0 |     Sign(hash, vchSig); | 
| 246 | 0 |     return pubkey.Verify(hash, vchSig); | 
| 247 | 0 | } | 
| 248 |  |  | 
| 249 | 0 | bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const { | 
| 250 | 0 |     if (!keydata) | 
| 251 | 0 |         return false; | 
| 252 | 0 |     vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE); | 
| 253 | 0 |     int rec = -1; | 
| 254 | 0 |     secp256k1_ecdsa_recoverable_signature rsig; | 
| 255 | 0 |     int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &rsig, hash.begin(), UCharCast(begin()), secp256k1_nonce_function_rfc6979, nullptr); | 
| 256 | 0 |     assert(ret); | 
| 257 | 0 |     ret = secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_static, &vchSig[1], &rec, &rsig); | 
| 258 | 0 |     assert(ret); | 
| 259 | 0 |     assert(rec != -1); | 
| 260 | 0 |     vchSig[0] = 27 + rec + (fCompressed ? 4 : 0); | 
| 261 |  |     // Additional verification step to prevent using a potentially corrupted signature | 
| 262 | 0 |     secp256k1_pubkey epk, rpk; | 
| 263 | 0 |     ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &epk, UCharCast(begin())); | 
| 264 | 0 |     assert(ret); | 
| 265 | 0 |     ret = secp256k1_ecdsa_recover(secp256k1_context_static, &rpk, &rsig, hash.begin()); | 
| 266 | 0 |     assert(ret); | 
| 267 | 0 |     ret = secp256k1_ec_pubkey_cmp(secp256k1_context_static, &epk, &rpk); | 
| 268 | 0 |     assert(ret == 0); | 
| 269 | 0 |     return true; | 
| 270 | 0 | } | 
| 271 |  |  | 
| 272 |  | bool CKey::SignSchnorr(const uint256& hash, std::span<unsigned char> sig, const uint256* merkle_root, const uint256& aux) const | 
| 273 | 0 | { | 
| 274 | 0 |     KeyPair kp = ComputeKeyPair(merkle_root); | 
| 275 | 0 |     return kp.SignSchnorr(hash, sig, aux); | 
| 276 | 0 | } | 
| 277 |  |  | 
| 278 | 0 | bool CKey::Load(const CPrivKey &seckey, const CPubKey &vchPubKey, bool fSkipCheck=false) { | 
| 279 | 0 |     MakeKeyData(); | 
| 280 | 0 |     if (!ec_seckey_import_der(secp256k1_context_static, (unsigned char*)begin(), seckey.data(), seckey.size())) { | 
| 281 | 0 |         ClearKeyData(); | 
| 282 | 0 |         return false; | 
| 283 | 0 |     } | 
| 284 | 0 |     fCompressed = vchPubKey.IsCompressed(); | 
| 285 |  | 
 | 
| 286 | 0 |     if (fSkipCheck) | 
| 287 | 0 |         return true; | 
| 288 |  |  | 
| 289 | 0 |     return VerifyPubKey(vchPubKey); | 
| 290 | 0 | } | 
| 291 |  |  | 
| 292 | 0 | bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const { | 
| 293 | 0 |     assert(IsValid()); | 
| 294 | 0 |     assert(IsCompressed()); | 
| 295 | 0 |     std::vector<unsigned char, secure_allocator<unsigned char>> vout(64); | 
| 296 | 0 |     if ((nChild >> 31) == 0) { | 
| 297 | 0 |         CPubKey pubkey = GetPubKey(); | 
| 298 | 0 |         assert(pubkey.size() == CPubKey::COMPRESSED_SIZE); | 
| 299 | 0 |         BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data()); | 
| 300 | 0 |     } else { | 
| 301 | 0 |         assert(size() == 32); | 
| 302 | 0 |         BIP32Hash(cc, nChild, 0, UCharCast(begin()), vout.data()); | 
| 303 | 0 |     } | 
| 304 | 0 |     memcpy(ccChild.begin(), vout.data()+32, 32); | 
| 305 | 0 |     keyChild.Set(begin(), begin() + 32, true); | 
| 306 | 0 |     bool ret = secp256k1_ec_seckey_tweak_add(secp256k1_context_static, (unsigned char*)keyChild.begin(), vout.data()); | 
| 307 | 0 |     if (!ret) keyChild.ClearKeyData(); | 
| 308 | 0 |     return ret; | 
| 309 | 0 | } | 
| 310 |  |  | 
| 311 |  | EllSwiftPubKey CKey::EllSwiftCreate(std::span<const std::byte> ent32) const | 
| 312 | 0 | { | 
| 313 | 0 |     assert(keydata); | 
| 314 | 0 |     assert(ent32.size() == 32); | 
| 315 | 0 |     std::array<std::byte, EllSwiftPubKey::size()> encoded_pubkey; | 
| 316 |  | 
 | 
| 317 | 0 |     auto success = secp256k1_ellswift_create(secp256k1_context_sign, | 
| 318 | 0 |                                              UCharCast(encoded_pubkey.data()), | 
| 319 | 0 |                                              keydata->data(), | 
| 320 | 0 |                                              UCharCast(ent32.data())); | 
| 321 |  |  | 
| 322 |  |     // Should always succeed for valid keys (asserted above). | 
| 323 | 0 |     assert(success); | 
| 324 | 0 |     return {encoded_pubkey}; | 
| 325 | 0 | } | 
| 326 |  |  | 
| 327 |  | ECDHSecret CKey::ComputeBIP324ECDHSecret(const EllSwiftPubKey& their_ellswift, const EllSwiftPubKey& our_ellswift, bool initiating) const | 
| 328 | 0 | { | 
| 329 | 0 |     assert(keydata); | 
| 330 |  |  | 
| 331 | 0 |     ECDHSecret output; | 
| 332 |  |     // BIP324 uses the initiator as party A, and the responder as party B. Remap the inputs | 
| 333 |  |     // accordingly: | 
| 334 | 0 |     bool success = secp256k1_ellswift_xdh(secp256k1_context_static, | 
| 335 | 0 |                                           UCharCast(output.data()), | 
| 336 | 0 |                                           UCharCast(initiating ? our_ellswift.data() : their_ellswift.data()), | 
| 337 | 0 |                                           UCharCast(initiating ? their_ellswift.data() : our_ellswift.data()), | 
| 338 | 0 |                                           keydata->data(), | 
| 339 | 0 |                                           initiating ? 0 : 1, | 
| 340 | 0 |                                           secp256k1_ellswift_xdh_hash_function_bip324, | 
| 341 | 0 |                                           nullptr); | 
| 342 |  |     // Should always succeed for valid keys (assert above). | 
| 343 | 0 |     assert(success); | 
| 344 | 0 |     return output; | 
| 345 | 0 | } | 
| 346 |  |  | 
| 347 |  | KeyPair CKey::ComputeKeyPair(const uint256* merkle_root) const | 
| 348 | 0 | { | 
| 349 | 0 |     return KeyPair(*this, merkle_root); | 
| 350 | 0 | } | 
| 351 |  |  | 
| 352 |  | CKey GenerateRandomKey(bool compressed) noexcept | 
| 353 | 0 | { | 
| 354 | 0 |     CKey key; | 
| 355 | 0 |     key.MakeNewKey(/*fCompressed=*/compressed); | 
| 356 | 0 |     return key; | 
| 357 | 0 | } | 
| 358 |  |  | 
| 359 | 0 | bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const { | 
| 360 | 0 |     if (nDepth == std::numeric_limits<unsigned char>::max()) return false; | 
| 361 | 0 |     out.nDepth = nDepth + 1; | 
| 362 | 0 |     CKeyID id = key.GetPubKey().GetID(); | 
| 363 | 0 |     memcpy(out.vchFingerprint, &id, 4); | 
| 364 | 0 |     out.nChild = _nChild; | 
| 365 | 0 |     return key.Derive(out.key, out.chaincode, _nChild, chaincode); | 
| 366 | 0 | } | 
| 367 |  |  | 
| 368 |  | void CExtKey::SetSeed(std::span<const std::byte> seed) | 
| 369 | 0 | { | 
| 370 | 0 |     static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'}; | 
| 371 | 0 |     std::vector<unsigned char, secure_allocator<unsigned char>> vout(64); | 
| 372 | 0 |     CHMAC_SHA512{hashkey, sizeof(hashkey)}.Write(UCharCast(seed.data()), seed.size()).Finalize(vout.data()); | 
| 373 | 0 |     key.Set(vout.data(), vout.data() + 32, true); | 
| 374 | 0 |     memcpy(chaincode.begin(), vout.data() + 32, 32); | 
| 375 | 0 |     nDepth = 0; | 
| 376 | 0 |     nChild = 0; | 
| 377 | 0 |     memset(vchFingerprint, 0, sizeof(vchFingerprint)); | 
| 378 | 0 | } | 
| 379 |  |  | 
| 380 | 0 | CExtPubKey CExtKey::Neuter() const { | 
| 381 | 0 |     CExtPubKey ret; | 
| 382 | 0 |     ret.nDepth = nDepth; | 
| 383 | 0 |     memcpy(ret.vchFingerprint, vchFingerprint, 4); | 
| 384 | 0 |     ret.nChild = nChild; | 
| 385 | 0 |     ret.pubkey = key.GetPubKey(); | 
| 386 | 0 |     ret.chaincode = chaincode; | 
| 387 | 0 |     return ret; | 
| 388 | 0 | } | 
| 389 |  |  | 
| 390 | 0 | void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const { | 
| 391 | 0 |     code[0] = nDepth; | 
| 392 | 0 |     memcpy(code+1, vchFingerprint, 4); | 
| 393 | 0 |     WriteBE32(code+5, nChild); | 
| 394 | 0 |     memcpy(code+9, chaincode.begin(), 32); | 
| 395 | 0 |     code[41] = 0; | 
| 396 | 0 |     assert(key.size() == 32); | 
| 397 | 0 |     memcpy(code+42, key.begin(), 32); | 
| 398 | 0 | } | 
| 399 |  |  | 
| 400 | 0 | void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) { | 
| 401 | 0 |     nDepth = code[0]; | 
| 402 | 0 |     memcpy(vchFingerprint, code+1, 4); | 
| 403 | 0 |     nChild = ReadBE32(code+5); | 
| 404 | 0 |     memcpy(chaincode.begin(), code+9, 32); | 
| 405 | 0 |     key.Set(code+42, code+BIP32_EXTKEY_SIZE, true); | 
| 406 | 0 |     if ((nDepth == 0 && (nChild != 0 || ReadLE32(vchFingerprint) != 0)) || code[41] != 0) key = CKey(); | 
| 407 | 0 | } | 
| 408 |  |  | 
| 409 |  | KeyPair::KeyPair(const CKey& key, const uint256* merkle_root) | 
| 410 | 0 | { | 
| 411 | 0 |     static_assert(std::tuple_size<KeyType>() == sizeof(secp256k1_keypair)); | 
| 412 | 0 |     MakeKeyPairData(); | 
| 413 | 0 |     auto keypair = reinterpret_cast<secp256k1_keypair*>(m_keypair->data()); | 
| 414 | 0 |     bool success = secp256k1_keypair_create(secp256k1_context_sign, keypair, UCharCast(key.data())); | 
| 415 | 0 |     if (success && merkle_root) { | 
| 416 | 0 |         secp256k1_xonly_pubkey pubkey; | 
| 417 | 0 |         unsigned char pubkey_bytes[32]; | 
| 418 | 0 |         assert(secp256k1_keypair_xonly_pub(secp256k1_context_static, &pubkey, nullptr, keypair)); | 
| 419 | 0 |         assert(secp256k1_xonly_pubkey_serialize(secp256k1_context_static, pubkey_bytes, &pubkey)); | 
| 420 | 0 |         uint256 tweak = XOnlyPubKey(pubkey_bytes).ComputeTapTweakHash(merkle_root->IsNull() ? nullptr : merkle_root); | 
| 421 | 0 |         success = secp256k1_keypair_xonly_tweak_add(secp256k1_context_static, keypair, tweak.data()); | 
| 422 | 0 |     } | 
| 423 | 0 |     if (!success) ClearKeyPairData(); | 
| 424 | 0 | } | 
| 425 |  |  | 
| 426 |  | bool KeyPair::SignSchnorr(const uint256& hash, std::span<unsigned char> sig, const uint256& aux) const | 
| 427 | 0 | { | 
| 428 | 0 |     assert(sig.size() == 64); | 
| 429 | 0 |     if (!IsValid()) return false; | 
| 430 | 0 |     auto keypair = reinterpret_cast<const secp256k1_keypair*>(m_keypair->data()); | 
| 431 | 0 |     bool ret = secp256k1_schnorrsig_sign32(secp256k1_context_sign, sig.data(), hash.data(), keypair, aux.data()); | 
| 432 | 0 |     if (ret) { | 
| 433 |  |         // Additional verification step to prevent using a potentially corrupted signature | 
| 434 | 0 |         secp256k1_xonly_pubkey pubkey_verify; | 
| 435 | 0 |         ret = secp256k1_keypair_xonly_pub(secp256k1_context_static, &pubkey_verify, nullptr, keypair); | 
| 436 | 0 |         ret &= secp256k1_schnorrsig_verify(secp256k1_context_static, sig.data(), hash.begin(), 32, &pubkey_verify); | 
| 437 | 0 |     } | 
| 438 | 0 |     if (!ret) memory_cleanse(sig.data(), sig.size()); | 
| 439 | 0 |     return ret; | 
| 440 | 0 | } | 
| 441 |  |  | 
| 442 | 0 | bool ECC_InitSanityCheck() { | 
| 443 | 0 |     CKey key = GenerateRandomKey(); | 
| 444 | 0 |     CPubKey pubkey = key.GetPubKey(); | 
| 445 | 0 |     return key.VerifyPubKey(pubkey); | 
| 446 | 0 | } | 
| 447 |  |  | 
| 448 |  | /** Initialize the elliptic curve support. May not be called twice without calling ECC_Stop first. */ | 
| 449 | 51.2k | static void ECC_Start() { | 
| 450 | 51.2k |     assert(secp256k1_context_sign == nullptr); | 
| 451 |  |  | 
| 452 | 51.2k |     secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_NONE); | Line | Count | Source |  | 214 | 51.2k | #define SECP256K1_CONTEXT_NONE (SECP256K1_FLAGS_TYPE_CONTEXT) | Line | Count | Source |  | 204 | 51.2k | #define SECP256K1_FLAGS_TYPE_CONTEXT (1 << 0) | 
 | 
 | 
| 453 | 51.2k |     assert(ctx != nullptr); | 
| 454 |  |  | 
| 455 | 51.2k |     { | 
| 456 |  |         // Pass in a random blinding seed to the secp256k1 context. | 
| 457 | 51.2k |         std::vector<unsigned char, secure_allocator<unsigned char>> vseed(32); | 
| 458 | 51.2k |         GetRandBytes(vseed); | 
| 459 | 51.2k |         bool ret = secp256k1_context_randomize(ctx, vseed.data()); | 
| 460 | 51.2k |         assert(ret); | 
| 461 | 51.2k |     } | 
| 462 |  |  | 
| 463 | 51.2k |     secp256k1_context_sign = ctx; | 
| 464 | 51.2k | } | 
| 465 |  |  | 
| 466 |  | /** Deinitialize the elliptic curve support. No-op if ECC_Start wasn't called first. */ | 
| 467 | 51.2k | static void ECC_Stop() { | 
| 468 | 51.2k |     secp256k1_context *ctx = secp256k1_context_sign; | 
| 469 | 51.2k |     secp256k1_context_sign = nullptr; | 
| 470 |  |  | 
| 471 | 51.2k |     if (ctx) { | 
| 472 | 51.2k |         secp256k1_context_destroy(ctx); | 
| 473 | 51.2k |     } | 
| 474 | 51.2k | } | 
| 475 |  |  | 
| 476 |  | ECC_Context::ECC_Context() | 
| 477 | 51.2k | { | 
| 478 | 51.2k |     ECC_Start(); | 
| 479 | 51.2k | } | 
| 480 |  |  | 
| 481 |  | ECC_Context::~ECC_Context() | 
| 482 | 51.2k | { | 
| 483 | 51.2k |     ECC_Stop(); | 
| 484 | 51.2k | } |