/Users/eugenesiegel/btc/bitcoin/src/merkleblock.cpp
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | // Copyright (c) 2009-2010 Satoshi Nakamoto | 
| 2 |  | // Copyright (c) 2009-2020 The Bitcoin Core developers | 
| 3 |  | // Distributed under the MIT software license, see the accompanying | 
| 4 |  | // file COPYING or http://www.opensource.org/licenses/mit-license.php. | 
| 5 |  |  | 
| 6 |  | #include <merkleblock.h> | 
| 7 |  |  | 
| 8 |  | #include <hash.h> | 
| 9 |  | #include <consensus/consensus.h> | 
| 10 |  |  | 
| 11 |  |  | 
| 12 |  | std::vector<unsigned char> BitsToBytes(const std::vector<bool>& bits) | 
| 13 | 0 | { | 
| 14 | 0 |     std::vector<unsigned char> ret((bits.size() + 7) / 8); | 
| 15 | 0 |     for (unsigned int p = 0; p < bits.size(); p++) { | 
| 16 | 0 |         ret[p / 8] |= bits[p] << (p % 8); | 
| 17 | 0 |     } | 
| 18 | 0 |     return ret; | 
| 19 | 0 | } | 
| 20 |  |  | 
| 21 |  | std::vector<bool> BytesToBits(const std::vector<unsigned char>& bytes) | 
| 22 | 0 | { | 
| 23 | 0 |     std::vector<bool> ret(bytes.size() * 8); | 
| 24 | 0 |     for (unsigned int p = 0; p < ret.size(); p++) { | 
| 25 | 0 |         ret[p] = (bytes[p / 8] & (1 << (p % 8))) != 0; | 
| 26 | 0 |     } | 
| 27 | 0 |     return ret; | 
| 28 | 0 | } | 
| 29 |  |  | 
| 30 |  | CMerkleBlock::CMerkleBlock(const CBlock& block, CBloomFilter* filter, const std::set<Txid>* txids) | 
| 31 | 0 | { | 
| 32 | 0 |     header = block.GetBlockHeader(); | 
| 33 |  | 
 | 
| 34 | 0 |     std::vector<bool> vMatch; | 
| 35 | 0 |     std::vector<Txid> vHashes; | 
| 36 |  | 
 | 
| 37 | 0 |     vMatch.reserve(block.vtx.size()); | 
| 38 | 0 |     vHashes.reserve(block.vtx.size()); | 
| 39 |  | 
 | 
| 40 | 0 |     for (unsigned int i = 0; i < block.vtx.size(); i++) | 
| 41 | 0 |     { | 
| 42 | 0 |         const Txid& hash{block.vtx[i]->GetHash()}; | 
| 43 | 0 |         if (txids && txids->count(hash)) { | 
| 44 | 0 |             vMatch.push_back(true); | 
| 45 | 0 |         } else if (filter && filter->IsRelevantAndUpdate(*block.vtx[i])) { | 
| 46 | 0 |             vMatch.push_back(true); | 
| 47 | 0 |             vMatchedTxn.emplace_back(i, hash); | 
| 48 | 0 |         } else { | 
| 49 | 0 |             vMatch.push_back(false); | 
| 50 | 0 |         } | 
| 51 | 0 |         vHashes.push_back(hash); | 
| 52 | 0 |     } | 
| 53 |  | 
 | 
| 54 | 0 |     txn = CPartialMerkleTree(vHashes, vMatch); | 
| 55 | 0 | } | 
| 56 |  |  | 
| 57 |  | // NOLINTNEXTLINE(misc-no-recursion) | 
| 58 | 0 | uint256 CPartialMerkleTree::CalcHash(int height, unsigned int pos, const std::vector<Txid> &vTxid) { | 
| 59 |  |     //we can never have zero txs in a merkle block, we always need the coinbase tx | 
| 60 |  |     //if we do not have this assert, we can hit a memory access violation when indexing into vTxid | 
| 61 | 0 |     assert(vTxid.size() != 0); | 
| 62 | 0 |     if (height == 0) { | 
| 63 |  |         // hash at height 0 is the txids themselves | 
| 64 | 0 |         return vTxid[pos].ToUint256(); | 
| 65 | 0 |     } else { | 
| 66 |  |         // calculate left hash | 
| 67 | 0 |         uint256 left = CalcHash(height-1, pos*2, vTxid), right; | 
| 68 |  |         // calculate right hash if not beyond the end of the array - copy left hash otherwise | 
| 69 | 0 |         if (pos*2+1 < CalcTreeWidth(height-1)) | 
| 70 | 0 |             right = CalcHash(height-1, pos*2+1, vTxid); | 
| 71 | 0 |         else | 
| 72 | 0 |             right = left; | 
| 73 |  |         // combine subhashes | 
| 74 | 0 |         return Hash(left, right); | 
| 75 | 0 |     } | 
| 76 | 0 | } | 
| 77 |  |  | 
| 78 |  | // NOLINTNEXTLINE(misc-no-recursion) | 
| 79 | 0 | void CPartialMerkleTree::TraverseAndBuild(int height, unsigned int pos, const std::vector<Txid> &vTxid, const std::vector<bool> &vMatch) { | 
| 80 |  |     // determine whether this node is the parent of at least one matched txid | 
| 81 | 0 |     bool fParentOfMatch = false; | 
| 82 | 0 |     for (unsigned int p = pos << height; p < (pos+1) << height && p < nTransactions; p++) | 
| 83 | 0 |         fParentOfMatch |= vMatch[p]; | 
| 84 |  |     // store as flag bit | 
| 85 | 0 |     vBits.push_back(fParentOfMatch); | 
| 86 | 0 |     if (height==0 || !fParentOfMatch) { | 
| 87 |  |         // if at height 0, or nothing interesting below, store hash and stop | 
| 88 | 0 |         vHash.push_back(CalcHash(height, pos, vTxid)); | 
| 89 | 0 |     } else { | 
| 90 |  |         // otherwise, don't store any hash, but descend into the subtrees | 
| 91 | 0 |         TraverseAndBuild(height-1, pos*2, vTxid, vMatch); | 
| 92 | 0 |         if (pos*2+1 < CalcTreeWidth(height-1)) | 
| 93 | 0 |             TraverseAndBuild(height-1, pos*2+1, vTxid, vMatch); | 
| 94 | 0 |     } | 
| 95 | 0 | } | 
| 96 |  |  | 
| 97 |  | // NOLINTNEXTLINE(misc-no-recursion) | 
| 98 | 0 | uint256 CPartialMerkleTree::TraverseAndExtract(int height, unsigned int pos, unsigned int &nBitsUsed, unsigned int &nHashUsed, std::vector<Txid> &vMatch, std::vector<unsigned int> &vnIndex) { | 
| 99 | 0 |     if (nBitsUsed >= vBits.size()) { | 
| 100 |  |         // overflowed the bits array - failure | 
| 101 | 0 |         fBad = true; | 
| 102 | 0 |         return uint256(); | 
| 103 | 0 |     } | 
| 104 | 0 |     bool fParentOfMatch = vBits[nBitsUsed++]; | 
| 105 | 0 |     if (height==0 || !fParentOfMatch) { | 
| 106 |  |         // if at height 0, or nothing interesting below, use stored hash and do not descend | 
| 107 | 0 |         if (nHashUsed >= vHash.size()) { | 
| 108 |  |             // overflowed the hash array - failure | 
| 109 | 0 |             fBad = true; | 
| 110 | 0 |             return uint256(); | 
| 111 | 0 |         } | 
| 112 | 0 |         const uint256 &hash = vHash[nHashUsed++]; | 
| 113 | 0 |         if (height==0 && fParentOfMatch) { // in case of height 0, we have a matched txid | 
| 114 | 0 |             vMatch.push_back(Txid::FromUint256(hash)); | 
| 115 | 0 |             vnIndex.push_back(pos); | 
| 116 | 0 |         } | 
| 117 | 0 |         return hash; | 
| 118 | 0 |     } else { | 
| 119 |  |         // otherwise, descend into the subtrees to extract matched txids and hashes | 
| 120 | 0 |         uint256 left = TraverseAndExtract(height-1, pos*2, nBitsUsed, nHashUsed, vMatch, vnIndex), right; | 
| 121 | 0 |         if (pos*2+1 < CalcTreeWidth(height-1)) { | 
| 122 | 0 |             right = TraverseAndExtract(height-1, pos*2+1, nBitsUsed, nHashUsed, vMatch, vnIndex); | 
| 123 | 0 |             if (right == left) { | 
| 124 |  |                 // The left and right branches should never be identical, as the transaction | 
| 125 |  |                 // hashes covered by them must each be unique. | 
| 126 | 0 |                 fBad = true; | 
| 127 | 0 |             } | 
| 128 | 0 |         } else { | 
| 129 | 0 |             right = left; | 
| 130 | 0 |         } | 
| 131 |  |         // and combine them before returning | 
| 132 | 0 |         return Hash(left, right); | 
| 133 | 0 |     } | 
| 134 | 0 | } | 
| 135 |  |  | 
| 136 | 0 | CPartialMerkleTree::CPartialMerkleTree(const std::vector<Txid> &vTxid, const std::vector<bool> &vMatch) : nTransactions(vTxid.size()), fBad(false) { | 
| 137 |  |     // reset state | 
| 138 | 0 |     vBits.clear(); | 
| 139 | 0 |     vHash.clear(); | 
| 140 |  |  | 
| 141 |  |     // calculate height of tree | 
| 142 | 0 |     int nHeight = 0; | 
| 143 | 0 |     while (CalcTreeWidth(nHeight) > 1) | 
| 144 | 0 |         nHeight++; | 
| 145 |  |  | 
| 146 |  |     // traverse the partial tree | 
| 147 | 0 |     TraverseAndBuild(nHeight, 0, vTxid, vMatch); | 
| 148 | 0 | } | 
| 149 |  |  | 
| 150 | 0 | CPartialMerkleTree::CPartialMerkleTree() : nTransactions(0), fBad(true) {} | 
| 151 |  |  | 
| 152 | 0 | uint256 CPartialMerkleTree::ExtractMatches(std::vector<Txid> &vMatch, std::vector<unsigned int> &vnIndex) { | 
| 153 | 0 |     vMatch.clear(); | 
| 154 |  |     // An empty set will not work | 
| 155 | 0 |     if (nTransactions == 0) | 
| 156 | 0 |         return uint256(); | 
| 157 |  |     // check for excessively high numbers of transactions | 
| 158 | 0 |     if (nTransactions > MAX_BLOCK_WEIGHT / MIN_TRANSACTION_WEIGHT) | 
| 159 | 0 |         return uint256(); | 
| 160 |  |     // there can never be more hashes provided than one for every txid | 
| 161 | 0 |     if (vHash.size() > nTransactions) | 
| 162 | 0 |         return uint256(); | 
| 163 |  |     // there must be at least one bit per node in the partial tree, and at least one node per hash | 
| 164 | 0 |     if (vBits.size() < vHash.size()) | 
| 165 | 0 |         return uint256(); | 
| 166 |  |     // calculate height of tree | 
| 167 | 0 |     int nHeight = 0; | 
| 168 | 0 |     while (CalcTreeWidth(nHeight) > 1) | 
| 169 | 0 |         nHeight++; | 
| 170 |  |     // traverse the partial tree | 
| 171 | 0 |     unsigned int nBitsUsed = 0, nHashUsed = 0; | 
| 172 | 0 |     uint256 hashMerkleRoot = TraverseAndExtract(nHeight, 0, nBitsUsed, nHashUsed, vMatch, vnIndex); | 
| 173 |  |     // verify that no problems occurred during the tree traversal | 
| 174 | 0 |     if (fBad) | 
| 175 | 0 |         return uint256(); | 
| 176 |  |     // verify that all bits were consumed (except for the padding caused by serializing it as a byte sequence) | 
| 177 | 0 |     if ((nBitsUsed+7)/8 != (vBits.size()+7)/8) | 
| 178 | 0 |         return uint256(); | 
| 179 |  |     // verify that all hashes were consumed | 
| 180 | 0 |     if (nHashUsed != vHash.size()) | 
| 181 | 0 |         return uint256(); | 
| 182 | 0 |     return hashMerkleRoot; | 
| 183 | 0 | } |