fuzz coverage

Coverage Report

Created: 2025-10-29 15:27

/Users/eugenesiegel/btc/bitcoin/src/netaddress.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-present The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <netaddress.h>
7
8
#include <crypto/common.h>
9
#include <crypto/sha3.h>
10
#include <hash.h>
11
#include <prevector.h>
12
#include <tinyformat.h>
13
#include <util/strencodings.h>
14
#include <util/string.h>
15
16
#include <algorithm>
17
#include <array>
18
#include <cstdint>
19
#include <ios>
20
#include <iterator>
21
#include <tuple>
22
23
using util::ContainsNoNUL;
24
using util::HasPrefix;
25
26
CNetAddr::BIP155Network CNetAddr::GetBIP155Network() const
27
0
{
28
0
    switch (m_net) {
29
0
    case NET_IPV4:
30
0
        return BIP155Network::IPV4;
31
0
    case NET_IPV6:
32
0
        return BIP155Network::IPV6;
33
0
    case NET_ONION:
34
0
        return BIP155Network::TORV3;
35
0
    case NET_I2P:
36
0
        return BIP155Network::I2P;
37
0
    case NET_CJDNS:
38
0
        return BIP155Network::CJDNS;
39
0
    case NET_INTERNAL:   // should have been handled before calling this function
40
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
41
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
42
0
        assert(false);
43
0
    } // no default case, so the compiler can warn about missing cases
44
45
0
    assert(false);
46
0
}
47
48
bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
49
382k
{
50
382k
    switch (possible_bip155_net) {
51
302k
    case BIP155Network::IPV4:
52
302k
        if (address_size == ADDR_IPV4_SIZE) {
53
302k
            m_net = NET_IPV4;
54
302k
            return true;
55
302k
        }
56
0
        throw std::ios_base::failure(
57
0
            strprintf("BIP155 IPv4 address with length %u (should be %u)", address_size,
Line
Count
Source
1172
0
#define strprintf tfm::format
58
0
                      ADDR_IPV4_SIZE));
59
15.3k
    case BIP155Network::IPV6:
60
15.3k
        if (address_size == ADDR_IPV6_SIZE) {
61
15.3k
            m_net = NET_IPV6;
62
15.3k
            return true;
63
15.3k
        }
64
0
        throw std::ios_base::failure(
65
0
            strprintf("BIP155 IPv6 address with length %u (should be %u)", address_size,
Line
Count
Source
1172
0
#define strprintf tfm::format
66
0
                      ADDR_IPV6_SIZE));
67
2.77k
    case BIP155Network::TORV3:
68
2.77k
        if (address_size == ADDR_TORV3_SIZE) {
69
2.77k
            m_net = NET_ONION;
70
2.77k
            return true;
71
2.77k
        }
72
0
        throw std::ios_base::failure(
73
0
            strprintf("BIP155 TORv3 address with length %u (should be %u)", address_size,
Line
Count
Source
1172
0
#define strprintf tfm::format
74
0
                      ADDR_TORV3_SIZE));
75
59.7k
    case BIP155Network::I2P:
76
59.7k
        if (address_size == ADDR_I2P_SIZE) {
77
59.7k
            m_net = NET_I2P;
78
59.7k
            return true;
79
59.7k
        }
80
0
        throw std::ios_base::failure(
81
0
            strprintf("BIP155 I2P address with length %u (should be %u)", address_size,
Line
Count
Source
1172
0
#define strprintf tfm::format
82
0
                      ADDR_I2P_SIZE));
83
1.71k
    case BIP155Network::CJDNS:
84
1.71k
        if (address_size == ADDR_CJDNS_SIZE) {
85
1.71k
            m_net = NET_CJDNS;
86
1.71k
            return true;
87
1.71k
        }
88
0
        throw std::ios_base::failure(
89
0
            strprintf("BIP155 CJDNS address with length %u (should be %u)", address_size,
Line
Count
Source
1172
0
#define strprintf tfm::format
90
0
                      ADDR_CJDNS_SIZE));
91
382k
    }
92
93
    // Don't throw on addresses with unknown network ids (maybe from the future).
94
    // Instead silently drop them and have the unserialization code consume
95
    // subsequent ones which may be known to us.
96
0
    return false;
97
382k
}
98
99
/**
100
 * Construct an unspecified IPv6 network address (::/128).
101
 *
102
 * @note This address is considered invalid by CNetAddr::IsValid()
103
 */
104
1.64M
CNetAddr::CNetAddr() = default;
105
106
void CNetAddr::SetIP(const CNetAddr& ipIn)
107
0
{
108
    // Size check.
109
0
    switch (ipIn.m_net) {
110
0
    case NET_IPV4:
111
0
        assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
112
0
        break;
113
0
    case NET_IPV6:
114
0
        assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
115
0
        break;
116
0
    case NET_ONION:
117
0
        assert(ipIn.m_addr.size() == ADDR_TORV3_SIZE);
118
0
        break;
119
0
    case NET_I2P:
120
0
        assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
121
0
        break;
122
0
    case NET_CJDNS:
123
0
        assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
124
0
        break;
125
0
    case NET_INTERNAL:
126
0
        assert(ipIn.m_addr.size() == ADDR_INTERNAL_SIZE);
127
0
        break;
128
0
    case NET_UNROUTABLE:
129
0
    case NET_MAX:
130
0
        assert(false);
131
0
    } // no default case, so the compiler can warn about missing cases
132
133
0
    m_net = ipIn.m_net;
134
0
    m_addr = ipIn.m_addr;
135
0
}
136
137
void CNetAddr::SetLegacyIPv6(std::span<const uint8_t> ipv6)
138
191k
{
139
191k
    assert(ipv6.size() == ADDR_IPV6_SIZE);
140
141
191k
    size_t skip{0};
142
143
191k
    if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
144
        // IPv4-in-IPv6
145
0
        m_net = NET_IPV4;
146
0
        skip = sizeof(IPV4_IN_IPV6_PREFIX);
147
191k
    } else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
148
        // TORv2-in-IPv6 (unsupported). Unserialize as !IsValid(), thus ignoring them.
149
        // Mimic a default-constructed CNetAddr object which is !IsValid() and thus
150
        // will not be gossiped, but continue reading next addresses from the stream.
151
0
        m_net = NET_IPV6;
152
0
        m_addr.assign(ADDR_IPV6_SIZE, 0x0);
153
0
        return;
154
191k
    } else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
155
        // Internal-in-IPv6
156
0
        m_net = NET_INTERNAL;
157
0
        skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
158
191k
    } else {
159
        // IPv6
160
191k
        m_net = NET_IPV6;
161
191k
    }
162
163
191k
    m_addr.assign(ipv6.begin() + skip, ipv6.end());
164
191k
}
165
166
/**
167
 * Create an "internal" address that represents a name or FQDN. AddrMan uses
168
 * these fake addresses to keep track of which DNS seeds were used.
169
 * @returns Whether or not the operation was successful.
170
 * @see NET_INTERNAL, INTERNAL_IN_IPV6_PREFIX, CNetAddr::IsInternal(), CNetAddr::IsRFC4193()
171
 */
172
bool CNetAddr::SetInternal(const std::string &name)
173
2.36k
{
174
2.36k
    if (name.empty()) {
175
21
        return false;
176
21
    }
177
2.34k
    m_net = NET_INTERNAL;
178
2.34k
    unsigned char hash[32] = {};
179
2.34k
    CSHA256().Write((const unsigned char*)name.data(), name.size()).Finalize(hash);
180
2.34k
    m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
181
2.34k
    return true;
182
2.36k
}
183
184
namespace torv3 {
185
// https://gitlab.torproject.org/tpo/core/torspec/-/tree/main/spec/rend-spec
186
static constexpr size_t CHECKSUM_LEN = 2;
187
static const unsigned char VERSION[] = {3};
188
static constexpr size_t TOTAL_LEN = ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);
189
190
static void Checksum(std::span<const uint8_t> addr_pubkey, uint8_t (&checksum)[CHECKSUM_LEN])
191
239
{
192
    // TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
193
239
    static const unsigned char prefix[] = ".onion checksum";
194
239
    static constexpr size_t prefix_len = 15;
195
196
239
    SHA3_256 hasher;
197
198
239
    hasher.Write(std::span{prefix}.first(prefix_len));
199
239
    hasher.Write(addr_pubkey);
200
239
    hasher.Write(VERSION);
201
202
239
    uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];
203
204
239
    hasher.Finalize(checksum_full);
205
206
239
    memcpy(checksum, checksum_full, sizeof(checksum));
207
239
}
208
209
}; // namespace torv3
210
211
bool CNetAddr::SetSpecial(const std::string& addr)
212
0
{
213
0
    if (!ContainsNoNUL(addr)) {
214
0
        return false;
215
0
    }
216
217
0
    if (SetTor(addr)) {
218
0
        return true;
219
0
    }
220
221
0
    if (SetI2P(addr)) {
222
0
        return true;
223
0
    }
224
225
0
    return false;
226
0
}
227
228
bool CNetAddr::SetTor(const std::string& addr)
229
0
{
230
0
    static const char* suffix{".onion"};
231
0
    static constexpr size_t suffix_len{6};
232
233
0
    if (addr.size() <= suffix_len || addr.substr(addr.size() - suffix_len) != suffix) {
234
0
        return false;
235
0
    }
236
237
0
    auto input = DecodeBase32(std::string_view{addr}.substr(0, addr.size() - suffix_len));
238
239
0
    if (!input) {
240
0
        return false;
241
0
    }
242
243
0
    if (input->size() == torv3::TOTAL_LEN) {
244
0
        std::span<const uint8_t> input_pubkey{input->data(), ADDR_TORV3_SIZE};
245
0
        std::span<const uint8_t> input_checksum{input->data() + ADDR_TORV3_SIZE, torv3::CHECKSUM_LEN};
246
0
        std::span<const uint8_t> input_version{input->data() + ADDR_TORV3_SIZE + torv3::CHECKSUM_LEN, sizeof(torv3::VERSION)};
247
248
0
        if (!std::ranges::equal(input_version, torv3::VERSION)) {
249
0
            return false;
250
0
        }
251
252
0
        uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
253
0
        torv3::Checksum(input_pubkey, calculated_checksum);
254
255
0
        if (!std::ranges::equal(input_checksum, calculated_checksum)) {
256
0
            return false;
257
0
        }
258
259
0
        m_net = NET_ONION;
260
0
        m_addr.assign(input_pubkey.begin(), input_pubkey.end());
261
0
        return true;
262
0
    }
263
264
0
    return false;
265
0
}
266
267
bool CNetAddr::SetI2P(const std::string& addr)
268
0
{
269
    // I2P addresses that we support consist of 52 base32 characters + ".b32.i2p".
270
0
    static constexpr size_t b32_len{52};
271
0
    static const char* suffix{".b32.i2p"};
272
0
    static constexpr size_t suffix_len{8};
273
274
0
    if (addr.size() != b32_len + suffix_len || ToLower(addr.substr(b32_len)) != suffix) {
275
0
        return false;
276
0
    }
277
278
    // Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so DecodeBase32()
279
    // can decode it.
280
0
    const std::string b32_padded = addr.substr(0, b32_len) + "====";
281
282
0
    auto address_bytes = DecodeBase32(b32_padded);
283
284
0
    if (!address_bytes || address_bytes->size() != ADDR_I2P_SIZE) {
285
0
        return false;
286
0
    }
287
288
0
    m_net = NET_I2P;
289
0
    m_addr.assign(address_bytes->begin(), address_bytes->end());
290
291
0
    return true;
292
0
}
293
294
CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
295
0
{
296
0
    m_net = NET_IPV4;
297
0
    const uint8_t* ptr = reinterpret_cast<const uint8_t*>(&ipv4Addr);
298
0
    m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
299
0
}
300
301
CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope)
302
0
{
303
0
    SetLegacyIPv6({reinterpret_cast<const uint8_t*>(&ipv6Addr), sizeof(ipv6Addr)});
304
0
    m_scope_id = scope;
305
0
}
306
307
bool CNetAddr::IsBindAny() const
308
0
{
309
0
    if (!IsIPv4() && !IsIPv6()) {
310
0
        return false;
311
0
    }
312
0
    return std::all_of(m_addr.begin(), m_addr.end(), [](uint8_t b) { return b == 0; });
313
0
}
314
315
bool CNetAddr::IsRFC1918() const
316
534k
{
317
534k
    return IsIPv4() && (
318
422k
        m_addr[0] == 10 ||
319
422k
        
(422k
m_addr[0] == 192422k
&&
m_addr[1] == 168538
) ||
320
422k
        
(422k
m_addr[0] == 172422k
&&
m_addr[1] >= 161.88k
&&
m_addr[1] <= 311.75k
));
321
534k
}
322
323
bool CNetAddr::IsRFC2544() const
324
533k
{
325
533k
    return IsIPv4() && 
m_addr[0] == 198421k
&&
(215
m_addr[1] == 18215
||
m_addr[1] == 19215
);
326
533k
}
327
328
bool CNetAddr::IsRFC3927() const
329
533k
{
330
533k
    return IsIPv4() && 
HasPrefix(m_addr, std::array<uint8_t, 2>{169, 254})421k
;
331
533k
}
332
333
bool CNetAddr::IsRFC6598() const
334
533k
{
335
533k
    return IsIPv4() && 
m_addr[0] == 100421k
&&
m_addr[1] >= 642.80k
&&
m_addr[1] <= 1272.65k
;
336
533k
}
337
338
bool CNetAddr::IsRFC5737() const
339
533k
{
340
533k
    return IsIPv4() && 
(421k
HasPrefix(m_addr, std::array<uint8_t, 3>{192, 0, 2})421k
||
341
421k
                        
HasPrefix(m_addr, std::array<uint8_t, 3>{198, 51, 100})421k
||
342
421k
                        
HasPrefix(m_addr, std::array<uint8_t, 3>{203, 0, 113})421k
);
343
533k
}
344
345
bool CNetAddr::IsRFC3849() const
346
1.23M
{
347
1.23M
    return IsIPv6() && 
HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x0D, 0xB8})74.4k
;
348
1.23M
}
349
350
bool CNetAddr::IsRFC3964() const
351
36.1k
{
352
36.1k
    return IsIPv6() && 
HasPrefix(m_addr, std::array<uint8_t, 2>{0x20, 0x02})9.40k
;
353
36.1k
}
354
355
bool CNetAddr::IsRFC6052() const
356
36.1k
{
357
36.1k
    return IsIPv6() &&
358
36.1k
           HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x64, 0xFF, 0x9B, 0x00, 0x00,
359
9.40k
                                                     0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
360
36.1k
}
361
362
bool CNetAddr::IsRFC4380() const
363
36.0k
{
364
36.0k
    return IsIPv6() && 
HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x00, 0x00})9.36k
;
365
36.0k
}
366
367
bool CNetAddr::IsRFC4862() const
368
533k
{
369
533k
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 8>{0xFE, 0x80, 0x00, 0x00,
370
30.3k
                                                                0x00, 0x00, 0x00, 0x00});
371
533k
}
372
373
bool CNetAddr::IsRFC4193() const
374
533k
{
375
533k
    return IsIPv6() && 
(m_addr[0] & 0xFE) == 0xFC30.2k
;
376
533k
}
377
378
bool CNetAddr::IsRFC6145() const
379
36.1k
{
380
36.1k
    return IsIPv6() &&
381
36.1k
           HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
382
9.43k
                                                     0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00});
383
36.1k
}
384
385
bool CNetAddr::IsRFC4843() const
386
532k
{
387
532k
    return IsIPv6() && 
HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00})29.8k
&&
388
532k
           
(m_addr[3] & 0xF0) == 0x10422
;
389
532k
}
390
391
bool CNetAddr::IsRFC7343() const
392
532k
{
393
532k
    return IsIPv6() && 
HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00})29.7k
&&
394
532k
           
(m_addr[3] & 0xF0) == 0x20319
;
395
532k
}
396
397
bool CNetAddr::IsHeNet() const
398
0
{
399
0
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x04, 0x70});
400
0
}
401
402
bool CNetAddr::IsLocal() const
403
758k
{
404
    // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
405
758k
    if (IsIPv4() && 
(568k
m_addr[0] == 127568k
||
m_addr[0] == 0568k
)) {
406
73.9k
        return true;
407
73.9k
    }
408
409
    // IPv6 loopback (::1/128)
410
684k
    static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
411
684k
    if (IsIPv6() && 
memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 072.0k
) {
412
138
        return true;
413
138
    }
414
415
684k
    return false;
416
684k
}
417
418
/**
419
 * @returns Whether or not this network address is a valid address that @a could
420
 *          be used to refer to an actual host.
421
 *
422
 * @note A valid address may or may not be publicly routable on the global
423
 *       internet. As in, the set of valid addresses is a superset of the set of
424
 *       publicly routable addresses.
425
 *
426
 * @see CNetAddr::IsRoutable()
427
 */
428
bool CNetAddr::IsValid() const
429
1.68M
{
430
    // unspecified IPv6 address (::/128)
431
1.68M
    unsigned char ipNone6[16] = {};
432
1.68M
    if (IsIPv6() && 
memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0522k
) {
433
448k
        return false;
434
448k
    }
435
436
1.23M
    if (IsCJDNS() && 
!HasCJDNSPrefix()3.59k
) {
437
0
        return false;
438
0
    }
439
440
    // documentation IPv6 address
441
1.23M
    if (IsRFC3849())
442
0
        return false;
443
444
1.23M
    if (IsInternal())
445
13.4k
        return false;
446
447
1.22M
    if (IsIPv4()) {
448
1.06M
        const uint32_t addr = ReadBE32(m_addr.data());
449
1.06M
        if (addr == INADDR_ANY || 
addr == INADDR_NONE1.02M
) {
450
186k
            return false;
451
186k
        }
452
1.06M
    }
453
454
1.03M
    return true;
455
1.22M
}
456
457
/**
458
 * @returns Whether or not this network address is publicly routable on the
459
 *          global internet.
460
 *
461
 * @note A routable address is always valid. As in, the set of routable addresses
462
 *       is a subset of the set of valid addresses.
463
 *
464
 * @see CNetAddr::IsValid()
465
 */
466
bool CNetAddr::IsRoutable() const
467
734k
{
468
734k
    return IsValid() && 
!(534k
IsRFC1918()534k
||
IsRFC2544()533k
||
IsRFC3927()533k
||
IsRFC4862()533k
||
IsRFC6598()533k
||
IsRFC5737()533k
||
IsRFC4193()533k
||
IsRFC4843()532k
||
IsRFC7343()532k
||
IsLocal()532k
||
IsInternal()459k
);
469
734k
}
470
471
/**
472
 * @returns Whether or not this is a dummy address that represents a name.
473
 *
474
 * @see CNetAddr::SetInternal(const std::string &)
475
 */
476
bool CNetAddr::IsInternal() const
477
1.90M
{
478
1.90M
   return m_net == NET_INTERNAL;
479
1.90M
}
480
481
bool CNetAddr::IsAddrV1Compatible() const
482
372k
{
483
372k
    switch (m_net) {
484
258k
    case NET_IPV4:
485
309k
    case NET_IPV6:
486
343k
    case NET_INTERNAL:
487
343k
        return true;
488
1.65k
    case NET_ONION:
489
28.1k
    case NET_I2P:
490
29.1k
    case NET_CJDNS:
491
29.1k
        return false;
492
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
493
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
494
0
        assert(false);
495
372k
    } // no default case, so the compiler can warn about missing cases
496
497
0
    assert(false);
498
0
}
499
500
enum Network CNetAddr::GetNetwork() const
501
8.32k
{
502
8.32k
    if (IsInternal())
503
189
        return NET_INTERNAL;
504
505
8.13k
    if (!IsRoutable())
506
1.13k
        return NET_UNROUTABLE;
507
508
6.99k
    return m_net;
509
8.13k
}
510
511
static std::string IPv4ToString(std::span<const uint8_t> a)
512
2.29k
{
513
2.29k
    return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]);
Line
Count
Source
1172
2.29k
#define strprintf tfm::format
514
2.29k
}
515
516
// Return an IPv6 address text representation with zero compression as described in RFC 5952
517
// ("A Recommendation for IPv6 Address Text Representation").
518
static std::string IPv6ToString(std::span<const uint8_t> a, uint32_t scope_id)
519
2.46k
{
520
2.46k
    assert(a.size() == ADDR_IPV6_SIZE);
521
2.46k
    const std::array groups{
522
2.46k
        ReadBE16(&a[0]),
523
2.46k
        ReadBE16(&a[2]),
524
2.46k
        ReadBE16(&a[4]),
525
2.46k
        ReadBE16(&a[6]),
526
2.46k
        ReadBE16(&a[8]),
527
2.46k
        ReadBE16(&a[10]),
528
2.46k
        ReadBE16(&a[12]),
529
2.46k
        ReadBE16(&a[14]),
530
2.46k
    };
531
532
    // The zero compression implementation is inspired by Rust's std::net::Ipv6Addr, see
533
    // https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683
534
2.46k
    struct ZeroSpan {
535
2.46k
        size_t start_index{0};
536
2.46k
        size_t len{0};
537
2.46k
    };
538
539
    // Find longest sequence of consecutive all-zero fields. Use first zero sequence if two or more
540
    // zero sequences of equal length are found.
541
2.46k
    ZeroSpan longest, current;
542
22.1k
    for (size_t i{0}; i < groups.size(); 
++i19.7k
) {
543
19.7k
        if (groups[i] != 0) {
544
14.2k
            current = {i + 1, 0};
545
14.2k
            continue;
546
14.2k
        }
547
5.43k
        current.len += 1;
548
5.43k
        if (current.len > longest.len) {
549
4.94k
            longest = current;
550
4.94k
        }
551
5.43k
    }
552
553
2.46k
    std::string r;
554
2.46k
    r.reserve(39);
555
22.1k
    for (size_t i{0}; i < groups.size(); 
++i19.7k
) {
556
        // Replace the longest sequence of consecutive all-zero fields with two colons ("::").
557
19.7k
        if (longest.len >= 2 && 
i >= longest.start_index7.16k
&&
i < longest.start_index + longest.len5.28k
) {
558
3.78k
            if (i == longest.start_index) {
559
895
                r += "::";
560
895
            }
561
3.78k
            continue;
562
3.78k
        }
563
15.9k
        r += strprintf("%s%x", ((!r.empty() && 
r.back() != ':'13.7k
) ?
":"13.3k
:
""2.55k
), groups[i]);
Line
Count
Source
1172
15.9k
#define strprintf tfm::format
564
15.9k
    }
565
566
2.46k
    if (scope_id != 0) {
567
0
        r += strprintf("%%%u", scope_id);
Line
Count
Source
1172
0
#define strprintf tfm::format
568
0
    }
569
570
2.46k
    return r;
571
2.46k
}
572
573
std::string OnionToString(std::span<const uint8_t> addr)
574
239
{
575
239
    uint8_t checksum[torv3::CHECKSUM_LEN];
576
239
    torv3::Checksum(addr, checksum);
577
    // TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion"
578
239
    prevector<torv3::TOTAL_LEN, uint8_t> address{addr.begin(), addr.end()};
579
239
    address.insert(address.end(), checksum, checksum + torv3::CHECKSUM_LEN);
580
239
    address.insert(address.end(), torv3::VERSION, torv3::VERSION + sizeof(torv3::VERSION));
581
239
    return EncodeBase32(address) + ".onion";
582
239
}
583
584
std::string CNetAddr::ToStringAddr() const
585
5.49k
{
586
5.49k
    switch (m_net) {
587
2.29k
    case NET_IPV4:
588
2.29k
        return IPv4ToString(m_addr);
589
2.00k
    case NET_IPV6:
590
2.00k
        return IPv6ToString(m_addr, m_scope_id);
591
239
    case NET_ONION:
592
239
        return OnionToString(m_addr);
593
227
    case NET_I2P:
594
227
        return EncodeBase32(m_addr, false /* don't pad with = */) + ".b32.i2p";
595
463
    case NET_CJDNS:
596
463
        return IPv6ToString(m_addr, 0);
597
270
    case NET_INTERNAL:
598
270
        return EncodeBase32(m_addr) + ".internal";
599
0
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
600
0
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
601
0
        assert(false);
602
5.49k
    } // no default case, so the compiler can warn about missing cases
603
604
0
    assert(false);
605
0
}
606
607
bool operator==(const CNetAddr& a, const CNetAddr& b)
608
1.03M
{
609
1.03M
    return a.m_net == b.m_net && 
a.m_addr == b.m_addr60.2k
;
610
1.03M
}
611
612
bool operator<(const CNetAddr& a, const CNetAddr& b)
613
0
{
614
0
    return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
615
0
}
616
617
/**
618
 * Try to get our IPv4 address.
619
 *
620
 * @param[out] pipv4Addr The in_addr struct to which to copy.
621
 *
622
 * @returns Whether or not the operation was successful, in particular, whether
623
 *          or not our address was an IPv4 address.
624
 *
625
 * @see CNetAddr::IsIPv4()
626
 */
627
bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
628
0
{
629
0
    if (!IsIPv4())
630
0
        return false;
631
0
    assert(sizeof(*pipv4Addr) == m_addr.size());
632
0
    memcpy(pipv4Addr, m_addr.data(), m_addr.size());
633
0
    return true;
634
0
}
635
636
/**
637
 * Try to get our IPv6 (or CJDNS) address.
638
 *
639
 * @param[out] pipv6Addr The in6_addr struct to which to copy.
640
 *
641
 * @returns Whether or not the operation was successful, in particular, whether
642
 *          or not our address was an IPv6 address.
643
 *
644
 * @see CNetAddr::IsIPv6()
645
 */
646
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
647
0
{
648
0
    if (!IsIPv6() && !IsCJDNS()) {
649
0
        return false;
650
0
    }
651
0
    assert(sizeof(*pipv6Addr) == m_addr.size());
652
0
    memcpy(pipv6Addr, m_addr.data(), m_addr.size());
653
0
    return true;
654
0
}
655
656
bool CNetAddr::HasLinkedIPv4() const
657
151k
{
658
151k
    return IsRoutable() && (IsIPv4() || 
IsRFC6145()36.1k
||
IsRFC6052()36.1k
||
IsRFC3964()36.1k
||
IsRFC4380()36.0k
);
659
151k
}
660
661
uint32_t CNetAddr::GetLinkedIPv4() const
662
0
{
663
0
    if (IsIPv4()) {
664
0
        return ReadBE32(m_addr.data());
665
0
    } else if (IsRFC6052() || IsRFC6145()) {
666
        // mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4 bytes of the address
667
0
        return ReadBE32(std::span{m_addr}.last(ADDR_IPV4_SIZE).data());
668
0
    } else if (IsRFC3964()) {
669
        // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
670
0
        return ReadBE32(std::span{m_addr}.subspan(2, ADDR_IPV4_SIZE).data());
671
0
    } else if (IsRFC4380()) {
672
        // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the address, but bitflipped
673
0
        return ~ReadBE32(std::span{m_addr}.last(ADDR_IPV4_SIZE).data());
674
0
    }
675
0
    assert(false);
676
0
}
677
678
Network CNetAddr::GetNetClass() const
679
196k
{
680
    // Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers expect that.
681
682
    // Check for "internal" first because such addresses are also !IsRoutable()
683
    // and we don't want to return NET_UNROUTABLE in that case.
684
196k
    if (IsInternal()) {
685
1.60k
        return NET_INTERNAL;
686
1.60k
    }
687
194k
    if (!IsRoutable()) {
688
43.1k
        return NET_UNROUTABLE;
689
43.1k
    }
690
151k
    if (HasLinkedIPv4()) {
691
115k
        return NET_IPV4;
692
115k
    }
693
36.0k
    return m_net;
694
151k
}
695
696
std::vector<unsigned char> CNetAddr::GetAddrBytes() const
697
224k
{
698
224k
    if (IsAddrV1Compatible()) {
699
221k
        uint8_t serialized[V1_SERIALIZATION_SIZE];
700
221k
        SerializeV1Array(serialized);
701
221k
        return {std::begin(serialized), std::end(serialized)};
702
221k
    }
703
2.71k
    return std::vector<unsigned char>(m_addr.begin(), m_addr.end());
704
224k
}
705
706
// private extensions to enum Network, only returned by GetExtNetwork,
707
// and only used in GetReachabilityFrom
708
static const int NET_TEREDO = NET_MAX;
709
int static GetExtNetwork(const CNetAddr& addr)
710
0
{
711
0
    if (addr.IsRFC4380())
712
0
        return NET_TEREDO;
713
0
    return addr.GetNetwork();
714
0
}
715
716
/** Calculates a metric for how reachable (*this) is from a given partner */
717
int CNetAddr::GetReachabilityFrom(const CNetAddr& paddrPartner) const
718
0
{
719
0
    enum Reachability {
720
0
        REACH_UNREACHABLE,
721
0
        REACH_DEFAULT,
722
0
        REACH_TEREDO,
723
0
        REACH_IPV6_WEAK,
724
0
        REACH_IPV4,
725
0
        REACH_IPV6_STRONG,
726
0
        REACH_PRIVATE
727
0
    };
728
729
0
    if (!IsRoutable() || IsInternal())
730
0
        return REACH_UNREACHABLE;
731
732
0
    int ourNet = GetExtNetwork(*this);
733
0
    int theirNet = GetExtNetwork(paddrPartner);
734
0
    bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();
735
736
0
    switch(theirNet) {
737
0
    case NET_IPV4:
738
0
        switch(ourNet) {
739
0
        default:       return REACH_DEFAULT;
740
0
        case NET_IPV4: return REACH_IPV4;
741
0
        }
742
0
    case NET_IPV6:
743
0
        switch(ourNet) {
744
0
        default:         return REACH_DEFAULT;
745
0
        case NET_TEREDO: return REACH_TEREDO;
746
0
        case NET_IPV4:   return REACH_IPV4;
747
0
        case NET_IPV6:   return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
748
0
        }
749
0
    case NET_ONION:
750
0
        switch(ourNet) {
751
0
        default:         return REACH_DEFAULT;
752
0
        case NET_IPV4:   return REACH_IPV4; // Tor users can connect to IPv4 as well
753
0
        case NET_ONION:    return REACH_PRIVATE;
754
0
        }
755
0
    case NET_I2P:
756
0
        switch (ourNet) {
757
0
        case NET_I2P: return REACH_PRIVATE;
758
0
        default: return REACH_DEFAULT;
759
0
        }
760
0
    case NET_CJDNS:
761
0
        switch (ourNet) {
762
0
        case NET_CJDNS: return REACH_PRIVATE;
763
0
        default: return REACH_DEFAULT;
764
0
        }
765
0
    case NET_TEREDO:
766
0
        switch(ourNet) {
767
0
        default:          return REACH_DEFAULT;
768
0
        case NET_TEREDO:  return REACH_TEREDO;
769
0
        case NET_IPV6:    return REACH_IPV6_WEAK;
770
0
        case NET_IPV4:    return REACH_IPV4;
771
0
        }
772
0
    case NET_UNROUTABLE:
773
0
    default:
774
0
        switch(ourNet) {
775
0
        default:          return REACH_DEFAULT;
776
0
        case NET_TEREDO:  return REACH_TEREDO;
777
0
        case NET_IPV6:    return REACH_IPV6_WEAK;
778
0
        case NET_IPV4:    return REACH_IPV4;
779
0
        case NET_ONION:     return REACH_PRIVATE; // either from Tor, or don't care about our address
780
0
        }
781
0
    }
782
0
}
783
784
1.03M
CService::CService() : port(0)
785
1.03M
{
786
1.03M
}
787
788
386k
CService::CService(const CNetAddr& cip, uint16_t portIn) : CNetAddr(cip), port(portIn)
789
386k
{
790
386k
}
791
792
0
CService::CService(const struct in_addr& ipv4Addr, uint16_t portIn) : CNetAddr(ipv4Addr), port(portIn)
793
0
{
794
0
}
795
796
0
CService::CService(const struct in6_addr& ipv6Addr, uint16_t portIn) : CNetAddr(ipv6Addr), port(portIn)
797
0
{
798
0
}
799
800
0
CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
801
0
{
802
0
    assert(addr.sin_family == AF_INET);
803
0
}
804
805
0
CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port))
806
0
{
807
0
   assert(addr.sin6_family == AF_INET6);
808
0
}
809
810
bool CService::SetSockAddr(const struct sockaddr *paddr, socklen_t addrlen)
811
0
{
812
0
    switch (paddr->sa_family) {
813
0
    case AF_INET:
814
0
        if (addrlen != sizeof(struct sockaddr_in)) return false;
815
0
        *this = CService(*(const struct sockaddr_in*)paddr);
816
0
        return true;
817
0
    case AF_INET6:
818
0
        if (addrlen != sizeof(struct sockaddr_in6)) return false;
819
0
        *this = CService(*(const struct sockaddr_in6*)paddr);
820
0
        return true;
821
0
    default:
822
0
        return false;
823
0
    }
824
0
}
825
826
sa_family_t CService::GetSAFamily() const
827
0
{
828
0
    switch (m_net) {
829
0
    case NET_IPV4:
830
0
        return AF_INET;
831
0
    case NET_IPV6:
832
0
    case NET_CJDNS:
833
0
        return AF_INET6;
834
0
    default:
835
0
        return AF_UNSPEC;
836
0
    }
837
0
}
838
839
uint16_t CService::GetPort() const
840
0
{
841
0
    return port;
842
0
}
843
844
bool operator==(const CService& a, const CService& b)
845
0
{
846
0
    return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port == b.port;
847
0
}
848
849
bool operator<(const CService& a, const CService& b)
850
0
{
851
0
    return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) || (static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port < b.port);
852
0
}
853
854
/**
855
 * Obtain the IPv4/6 socket address this represents.
856
 *
857
 * @param[out] paddr The obtained socket address.
858
 * @param[in,out] addrlen The size, in bytes, of the address structure pointed
859
 *                        to by paddr. The value that's pointed to by this
860
 *                        parameter might change after calling this function if
861
 *                        the size of the corresponding address structure
862
 *                        changed.
863
 *
864
 * @returns Whether or not the operation was successful.
865
 */
866
bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
867
0
{
868
0
    if (IsIPv4()) {
869
0
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
870
0
            return false;
871
0
        *addrlen = sizeof(struct sockaddr_in);
872
0
        struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
873
0
        memset(paddrin, 0, *addrlen);
874
0
        if (!GetInAddr(&paddrin->sin_addr))
875
0
            return false;
876
0
        paddrin->sin_family = AF_INET;
877
0
        paddrin->sin_port = htons(port);
878
0
        return true;
879
0
    }
880
0
    if (IsIPv6() || IsCJDNS()) {
881
0
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
882
0
            return false;
883
0
        *addrlen = sizeof(struct sockaddr_in6);
884
0
        struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
885
0
        memset(paddrin6, 0, *addrlen);
886
0
        if (!GetIn6Addr(&paddrin6->sin6_addr))
887
0
            return false;
888
0
        paddrin6->sin6_scope_id = m_scope_id;
889
0
        paddrin6->sin6_family = AF_INET6;
890
0
        paddrin6->sin6_port = htons(port);
891
0
        return true;
892
0
    }
893
0
    return false;
894
0
}
895
896
/**
897
 * @returns An identifier unique to this service's address and port number.
898
 */
899
std::vector<unsigned char> CService::GetKey() const
900
0
{
901
0
    auto key = GetAddrBytes();
902
0
    key.push_back(port / 0x100); // most significant byte of our port
903
0
    key.push_back(port & 0x0FF); // least significant byte of our port
904
0
    return key;
905
0
}
906
907
std::string CService::ToStringAddrPort() const
908
5.49k
{
909
5.49k
    const auto port_str = strprintf("%u", port);
Line
Count
Source
1172
5.49k
#define strprintf tfm::format
910
911
5.49k
    if (IsIPv4() || 
IsTor()3.20k
||
IsI2P()2.96k
||
IsInternal()2.73k
) {
912
3.03k
        return ToStringAddr() + ":" + port_str;
913
3.03k
    } else {
914
2.46k
        return "[" + ToStringAddr() + "]:" + port_str;
915
2.46k
    }
916
5.49k
}
917
918
CSubNet::CSubNet():
919
224k
    valid(false)
920
224k
{
921
224k
    memset(netmask, 0, sizeof(netmask));
922
224k
}
923
924
0
CSubNet::CSubNet(const CNetAddr& addr, uint8_t mask) : CSubNet()
925
0
{
926
0
    valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
927
0
            (addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
928
0
    if (!valid) {
929
0
        return;
930
0
    }
931
932
0
    assert(mask <= sizeof(netmask) * 8);
933
934
0
    network = addr;
935
936
0
    uint8_t n = mask;
937
0
    for (size_t i = 0; i < network.m_addr.size(); ++i) {
938
0
        const uint8_t bits = n < 8 ? n : 8;
939
0
        netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits)); // Set first bits.
940
0
        network.m_addr[i] &= netmask[i]; // Normalize network according to netmask.
941
0
        n -= bits;
942
0
    }
943
0
}
Unexecuted instantiation: _ZN7CSubNetC2ERK8CNetAddrh
Unexecuted instantiation: _ZN7CSubNetC1ERK8CNetAddrh
944
945
/**
946
 * @returns The number of 1-bits in the prefix of the specified subnet mask. If
947
 *          the specified subnet mask is not a valid one, -1.
948
 */
949
static inline int NetmaskBits(uint8_t x)
950
0
{
951
0
    switch(x) {
952
0
    case 0x00: return 0;
953
0
    case 0x80: return 1;
954
0
    case 0xc0: return 2;
955
0
    case 0xe0: return 3;
956
0
    case 0xf0: return 4;
957
0
    case 0xf8: return 5;
958
0
    case 0xfc: return 6;
959
0
    case 0xfe: return 7;
960
0
    case 0xff: return 8;
961
0
    default: return -1;
962
0
    }
963
0
}
964
965
0
CSubNet::CSubNet(const CNetAddr& addr, const CNetAddr& mask) : CSubNet()
966
0
{
967
0
    valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
968
0
    if (!valid) {
969
0
        return;
970
0
    }
971
    // Check if `mask` contains 1-bits after 0-bits (which is an invalid netmask).
972
0
    bool zeros_found = false;
973
0
    for (auto b : mask.m_addr) {
974
0
        const int num_bits = NetmaskBits(b);
975
0
        if (num_bits == -1 || (zeros_found && num_bits != 0)) {
976
0
            valid = false;
977
0
            return;
978
0
        }
979
0
        if (num_bits < 8) {
980
0
            zeros_found = true;
981
0
        }
982
0
    }
983
984
0
    assert(mask.m_addr.size() <= sizeof(netmask));
985
986
0
    memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());
987
988
0
    network = addr;
989
990
    // Normalize network according to netmask
991
0
    for (size_t x = 0; x < network.m_addr.size(); ++x) {
992
0
        network.m_addr[x] &= netmask[x];
993
0
    }
994
0
}
Unexecuted instantiation: _ZN7CSubNetC2ERK8CNetAddrS2_
Unexecuted instantiation: _ZN7CSubNetC1ERK8CNetAddrS2_
995
996
224k
CSubNet::CSubNet(const CNetAddr& addr) : CSubNet()
997
224k
{
998
224k
    switch (addr.m_net) {
999
145k
    case NET_IPV4:
1000
187k
    case NET_IPV6:
1001
187k
        valid = true;
1002
187k
        assert(addr.m_addr.size() <= sizeof(netmask));
1003
187k
        memset(netmask, 0xFF, addr.m_addr.size());
1004
187k
        break;
1005
33
    case NET_ONION:
1006
2.67k
    case NET_I2P:
1007
2.71k
    case NET_CJDNS:
1008
2.71k
        valid = true;
1009
2.71k
        break;
1010
33.7k
    case NET_INTERNAL:
1011
33.7k
    case NET_UNROUTABLE:
1012
33.7k
    case NET_MAX:
1013
33.7k
        return;
1014
224k
    }
1015
1016
190k
    network = addr;
1017
190k
}
Unexecuted instantiation: _ZN7CSubNetC2ERK8CNetAddr
_ZN7CSubNetC1ERK8CNetAddr
Line
Count
Source
996
224k
CSubNet::CSubNet(const CNetAddr& addr) : CSubNet()
997
224k
{
998
224k
    switch (addr.m_net) {
999
145k
    case NET_IPV4:
1000
187k
    case NET_IPV6:
1001
187k
        valid = true;
1002
187k
        assert(addr.m_addr.size() <= sizeof(netmask));
1003
187k
        memset(netmask, 0xFF, addr.m_addr.size());
1004
187k
        break;
1005
33
    case NET_ONION:
1006
2.67k
    case NET_I2P:
1007
2.71k
    case NET_CJDNS:
1008
2.71k
        valid = true;
1009
2.71k
        break;
1010
33.7k
    case NET_INTERNAL:
1011
33.7k
    case NET_UNROUTABLE:
1012
33.7k
    case NET_MAX:
1013
33.7k
        return;
1014
224k
    }
1015
1016
190k
    network = addr;
1017
190k
}
1018
1019
/**
1020
 * @returns True if this subnet is valid, the specified address is valid, and
1021
 *          the specified address belongs in this subnet.
1022
 */
1023
bool CSubNet::Match(const CNetAddr &addr) const
1024
897k
{
1025
897k
    if (!valid || 
!addr.IsValid()762k
||
network.m_net != addr.m_net505k
)
1026
413k
        return false;
1027
1028
483k
    switch (network.m_net) {
1029
437k
    case NET_IPV4:
1030
480k
    case NET_IPV6:
1031
480k
        break;
1032
44
    case NET_ONION:
1033
2.80k
    case NET_I2P:
1034
2.85k
    case NET_CJDNS:
1035
2.85k
    case NET_INTERNAL:
1036
2.85k
        return addr == network;
1037
0
    case NET_UNROUTABLE:
1038
0
    case NET_MAX:
1039
0
        return false;
1040
483k
    }
1041
1042
480k
    assert(network.m_addr.size() == addr.m_addr.size());
1043
704k
    
for (size_t x = 0; 480k
x < addr.m_addr.size();
++x223k
) {
1044
702k
        if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
1045
478k
            return false;
1046
478k
        }
1047
702k
    }
1048
2.03k
    return true;
1049
480k
}
1050
1051
std::string CSubNet::ToString() const
1052
0
{
1053
0
    std::string suffix;
1054
1055
0
    switch (network.m_net) {
1056
0
    case NET_IPV4:
1057
0
    case NET_IPV6: {
1058
0
        assert(network.m_addr.size() <= sizeof(netmask));
1059
1060
0
        uint8_t cidr = 0;
1061
1062
0
        for (size_t i = 0; i < network.m_addr.size(); ++i) {
1063
0
            if (netmask[i] == 0x00) {
1064
0
                break;
1065
0
            }
1066
0
            cidr += NetmaskBits(netmask[i]);
1067
0
        }
1068
1069
0
        suffix = strprintf("/%u", cidr);
Line
Count
Source
1172
0
#define strprintf tfm::format
1070
0
        break;
1071
0
    }
1072
0
    case NET_ONION:
1073
0
    case NET_I2P:
1074
0
    case NET_CJDNS:
1075
0
    case NET_INTERNAL:
1076
0
    case NET_UNROUTABLE:
1077
0
    case NET_MAX:
1078
0
        break;
1079
0
    }
1080
1081
0
    return network.ToStringAddr() + suffix;
1082
0
}
1083
1084
bool CSubNet::IsValid() const
1085
0
{
1086
0
    return valid;
1087
0
}
1088
1089
bool operator==(const CSubNet& a, const CSubNet& b)
1090
0
{
1091
0
    return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
1092
0
}
1093
1094
bool operator<(const CSubNet& a, const CSubNet& b)
1095
0
{
1096
0
    return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
1097
0
}