/Users/eugenesiegel/btc/bitcoin/src/netgroup.cpp
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | // Copyright (c) 2021-2022 The Bitcoin Core developers | 
| 2 |  | // Distributed under the MIT software license, see the accompanying | 
| 3 |  | // file COPYING or http://www.opensource.org/licenses/mit-license.php. | 
| 4 |  |  | 
| 5 |  | #include <netgroup.h> | 
| 6 |  |  | 
| 7 |  | #include <hash.h> | 
| 8 |  | #include <logging.h> | 
| 9 |  | #include <util/asmap.h> | 
| 10 |  |  | 
| 11 |  | uint256 NetGroupManager::GetAsmapChecksum() const | 
| 12 | 0 | { | 
| 13 | 0 |     if (!m_asmap.size()) return {}; | 
| 14 |  |  | 
| 15 | 0 |     return (HashWriter{} << m_asmap).GetHash(); | 
| 16 | 0 | } | 
| 17 |  |  | 
| 18 |  | std::vector<unsigned char> NetGroupManager::GetGroup(const CNetAddr& address) const | 
| 19 | 0 | { | 
| 20 | 0 |     std::vector<unsigned char> vchRet; | 
| 21 |  |     // If non-empty asmap is supplied and the address is IPv4/IPv6, | 
| 22 |  |     // return ASN to be used for bucketing. | 
| 23 | 0 |     uint32_t asn = GetMappedAS(address); | 
| 24 | 0 |     if (asn != 0) { // Either asmap was empty, or address has non-asmappable net class (e.g. TOR). | 
| 25 | 0 |         vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in the same bucket | 
| 26 | 0 |         for (int i = 0; i < 4; i++) { | 
| 27 | 0 |             vchRet.push_back((asn >> (8 * i)) & 0xFF); | 
| 28 | 0 |         } | 
| 29 | 0 |         return vchRet; | 
| 30 | 0 |     } | 
| 31 |  |  | 
| 32 | 0 |     vchRet.push_back(address.GetNetClass()); | 
| 33 | 0 |     int nStartByte{0}; | 
| 34 | 0 |     int nBits{0}; | 
| 35 |  | 
 | 
| 36 | 0 |     if (address.IsLocal()) { | 
| 37 |  |         // all local addresses belong to the same group | 
| 38 | 0 |     } else if (address.IsInternal()) { | 
| 39 |  |         // All internal-usage addresses get their own group. | 
| 40 |  |         // Skip over the INTERNAL_IN_IPV6_PREFIX returned by CAddress::GetAddrBytes(). | 
| 41 | 0 |         nStartByte = INTERNAL_IN_IPV6_PREFIX.size(); | 
| 42 | 0 |         nBits = ADDR_INTERNAL_SIZE * 8; | 
| 43 | 0 |     } else if (!address.IsRoutable()) { | 
| 44 |  |         // all other unroutable addresses belong to the same group | 
| 45 | 0 |     } else if (address.HasLinkedIPv4()) { | 
| 46 |  |         // IPv4 addresses (and mapped IPv4 addresses) use /16 groups | 
| 47 | 0 |         uint32_t ipv4 = address.GetLinkedIPv4(); | 
| 48 | 0 |         vchRet.push_back((ipv4 >> 24) & 0xFF); | 
| 49 | 0 |         vchRet.push_back((ipv4 >> 16) & 0xFF); | 
| 50 | 0 |         return vchRet; | 
| 51 | 0 |     } else if (address.IsTor() || address.IsI2P()) { | 
| 52 | 0 |         nBits = 4; | 
| 53 | 0 |     } else if (address.IsCJDNS()) { | 
| 54 |  |         // Treat in the same way as Tor and I2P because the address in all of | 
| 55 |  |         // them is "random" bytes (derived from a public key). However in CJDNS | 
| 56 |  |         // the first byte is a constant (see CJDNS_PREFIX), so the random bytes | 
| 57 |  |         // come after it. Thus skip the constant 8 bits at the start. | 
| 58 | 0 |         nBits = 12; | 
| 59 | 0 |     } else if (address.IsHeNet()) { | 
| 60 |  |         // for he.net, use /36 groups | 
| 61 | 0 |         nBits = 36; | 
| 62 | 0 |     } else { | 
| 63 |  |         // for the rest of the IPv6 network, use /32 groups | 
| 64 | 0 |         nBits = 32; | 
| 65 | 0 |     } | 
| 66 |  |  | 
| 67 |  |     // Push our address onto vchRet. | 
| 68 | 0 |     auto addr_bytes = address.GetAddrBytes(); | 
| 69 | 0 |     const size_t num_bytes = nBits / 8; | 
| 70 | 0 |     vchRet.insert(vchRet.end(), addr_bytes.begin() + nStartByte, addr_bytes.begin() + nStartByte + num_bytes); | 
| 71 | 0 |     nBits %= 8; | 
| 72 |  |     // ...for the last byte, push nBits and for the rest of the byte push 1's | 
| 73 | 0 |     if (nBits > 0) { | 
| 74 | 0 |         assert(num_bytes < addr_bytes.size()); | 
| 75 | 0 |         vchRet.push_back(addr_bytes[num_bytes + nStartByte] | ((1 << (8 - nBits)) - 1)); | 
| 76 | 0 |     } | 
| 77 |  |  | 
| 78 | 0 |     return vchRet; | 
| 79 | 0 | } | 
| 80 |  |  | 
| 81 |  | uint32_t NetGroupManager::GetMappedAS(const CNetAddr& address) const | 
| 82 | 196k | { | 
| 83 | 196k |     uint32_t net_class = address.GetNetClass(); | 
| 84 | 196k |     if (m_asmap.size() == 0 || (0 net_class != NET_IPV40&& net_class != NET_IPV60)) { | 
| 85 | 196k |         return 0; // Indicates not found, safe because AS0 is reserved per RFC7607. | 
| 86 | 196k |     } | 
| 87 | 0 |     std::vector<bool> ip_bits(128); | 
| 88 | 0 |     if (address.HasLinkedIPv4()) { | 
| 89 |  |         // For lookup, treat as if it was just an IPv4 address (IPV4_IN_IPV6_PREFIX + IPv4 bits) | 
| 90 | 0 |         for (int8_t byte_i = 0; byte_i < 12; ++byte_i) { | 
| 91 | 0 |             for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) { | 
| 92 | 0 |                 ip_bits[byte_i * 8 + bit_i] = (IPV4_IN_IPV6_PREFIX[byte_i] >> (7 - bit_i)) & 1; | 
| 93 | 0 |             } | 
| 94 | 0 |         } | 
| 95 | 0 |         uint32_t ipv4 = address.GetLinkedIPv4(); | 
| 96 | 0 |         for (int i = 0; i < 32; ++i) { | 
| 97 | 0 |             ip_bits[96 + i] = (ipv4 >> (31 - i)) & 1; | 
| 98 | 0 |         } | 
| 99 | 0 |     } else { | 
| 100 |  |         // Use all 128 bits of the IPv6 address otherwise | 
| 101 | 0 |         assert(address.IsIPv6()); | 
| 102 | 0 |         auto addr_bytes = address.GetAddrBytes(); | 
| 103 | 0 |         for (int8_t byte_i = 0; byte_i < 16; ++byte_i) { | 
| 104 | 0 |             uint8_t cur_byte = addr_bytes[byte_i]; | 
| 105 | 0 |             for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) { | 
| 106 | 0 |                 ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1; | 
| 107 | 0 |             } | 
| 108 | 0 |         } | 
| 109 | 0 |     } | 
| 110 | 0 |     uint32_t mapped_as = Interpret(m_asmap, ip_bits); | 
| 111 | 0 |     return mapped_as; | 
| 112 | 0 | } | 
| 113 |  |  | 
| 114 | 0 | void NetGroupManager::ASMapHealthCheck(const std::vector<CNetAddr>& clearnet_addrs) const { | 
| 115 | 0 |     std::set<uint32_t> clearnet_asns{}; | 
| 116 | 0 |     int unmapped_count{0}; | 
| 117 |  | 
 | 
| 118 | 0 |     for (const auto& addr : clearnet_addrs) { | 
| 119 | 0 |         uint32_t asn = GetMappedAS(addr); | 
| 120 | 0 |         if (asn == 0) { | 
| 121 | 0 |             ++unmapped_count; | 
| 122 | 0 |             continue; | 
| 123 | 0 |         } | 
| 124 | 0 |         clearnet_asns.insert(asn); | 
| 125 | 0 |     } | 
| 126 |  | 
 | 
| 127 | 0 |     LogPrintf("ASMap Health Check: %i clearnet peers are mapped to %i ASNs with %i peers being unmapped\n", clearnet_addrs.size(), clearnet_asns.size(), unmapped_count);| Line | Count | Source |  | 361 | 0 | #define LogPrintf(...) LogInfo(__VA_ARGS__) | Line | Count | Source |  | 356 | 0 | #define LogInfo(...) LogPrintLevel_(BCLog::LogFlags::ALL, BCLog::Level::Info, /*should_ratelimit=*/true, __VA_ARGS__) | Line | Count | Source |  | 350 | 0 | #define LogPrintLevel_(category, level, should_ratelimit, ...) LogPrintFormatInternal(std::source_location::current(), category, level, should_ratelimit, __VA_ARGS__) | 
 | 
 | 
 | 
| 128 | 0 | } | 
| 129 |  |  | 
| 130 | 0 | bool NetGroupManager::UsingASMap() const { | 
| 131 | 0 |     return m_asmap.size() > 0; | 
| 132 | 0 | } |