/Users/eugenesiegel/btc/bitcoin/src/node/eviction.cpp
| Line | Count | Source (jump to first uncovered line) | 
| 1 |  | // Copyright (c) 2022 The Bitcoin Core developers | 
| 2 |  | // Distributed under the MIT software license, see the accompanying | 
| 3 |  | // file COPYING or http://www.opensource.org/licenses/mit-license.php. | 
| 4 |  |  | 
| 5 |  | #include <node/eviction.h> | 
| 6 |  |  | 
| 7 |  | #include <algorithm> | 
| 8 |  | #include <array> | 
| 9 |  | #include <chrono> | 
| 10 |  | #include <cstdint> | 
| 11 |  | #include <functional> | 
| 12 |  | #include <map> | 
| 13 |  | #include <vector> | 
| 14 |  |  | 
| 15 |  |  | 
| 16 |  | static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) | 
| 17 | 0 | { | 
| 18 | 0 |     return a.m_min_ping_time > b.m_min_ping_time; | 
| 19 | 0 | } | 
| 20 |  |  | 
| 21 |  | static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) | 
| 22 | 0 | { | 
| 23 | 0 |     return a.m_connected > b.m_connected; | 
| 24 | 0 | } | 
| 25 |  |  | 
| 26 | 0 | static bool CompareNetGroupKeyed(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) { | 
| 27 | 0 |     return a.nKeyedNetGroup < b.nKeyedNetGroup; | 
| 28 | 0 | } | 
| 29 |  |  | 
| 30 |  | static bool CompareNodeBlockTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) | 
| 31 | 0 | { | 
| 32 |  |     // There is a fall-through here because it is common for a node to have many peers which have not yet relayed a block. | 
| 33 | 0 |     if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time; | 
| 34 | 0 |     if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices; | 
| 35 | 0 |     return a.m_connected > b.m_connected; | 
| 36 | 0 | } | 
| 37 |  |  | 
| 38 |  | static bool CompareNodeTXTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) | 
| 39 | 0 | { | 
| 40 |  |     // There is a fall-through here because it is common for a node to have more than a few peers that have not yet relayed txn. | 
| 41 | 0 |     if (a.m_last_tx_time != b.m_last_tx_time) return a.m_last_tx_time < b.m_last_tx_time; | 
| 42 | 0 |     if (a.m_relay_txs != b.m_relay_txs) return b.m_relay_txs; | 
| 43 | 0 |     if (a.fBloomFilter != b.fBloomFilter) return a.fBloomFilter; | 
| 44 | 0 |     return a.m_connected > b.m_connected; | 
| 45 | 0 | } | 
| 46 |  |  | 
| 47 |  | // Pick out the potential block-relay only peers, and sort them by last block time. | 
| 48 |  | static bool CompareNodeBlockRelayOnlyTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b) | 
| 49 | 0 | { | 
| 50 | 0 |     if (a.m_relay_txs != b.m_relay_txs) return a.m_relay_txs; | 
| 51 | 0 |     if (a.m_last_block_time != b.m_last_block_time) return a.m_last_block_time < b.m_last_block_time; | 
| 52 | 0 |     if (a.fRelevantServices != b.fRelevantServices) return b.fRelevantServices; | 
| 53 | 0 |     return a.m_connected > b.m_connected; | 
| 54 | 0 | } | 
| 55 |  |  | 
| 56 |  | /** | 
| 57 |  |  * Sort eviction candidates by network/localhost and connection uptime. | 
| 58 |  |  * Candidates near the beginning are more likely to be evicted, and those | 
| 59 |  |  * near the end are more likely to be protected, e.g. less likely to be evicted. | 
| 60 |  |  * - First, nodes that are not `is_local` and that do not belong to `network`, | 
| 61 |  |  *   sorted by increasing uptime (from most recently connected to connected longer). | 
| 62 |  |  * - Then, nodes that are `is_local` or belong to `network`, sorted by increasing uptime. | 
| 63 |  |  */ | 
| 64 |  | struct CompareNodeNetworkTime { | 
| 65 |  |     const bool m_is_local; | 
| 66 |  |     const Network m_network; | 
| 67 | 0 |     CompareNodeNetworkTime(bool is_local, Network network) : m_is_local(is_local), m_network(network) {} | 
| 68 |  |     bool operator()(const NodeEvictionCandidate& a, const NodeEvictionCandidate& b) const | 
| 69 | 0 |     { | 
| 70 | 0 |         if (m_is_local && a.m_is_local != b.m_is_local) return b.m_is_local; | 
| 71 | 0 |         if ((a.m_network == m_network) != (b.m_network == m_network)) return b.m_network == m_network; | 
| 72 | 0 |         return a.m_connected > b.m_connected; | 
| 73 | 0 |     }; | 
| 74 |  | }; | 
| 75 |  |  | 
| 76 |  | //! Sort an array by the specified comparator, then erase the last K elements where predicate is true. | 
| 77 |  | template <typename T, typename Comparator> | 
| 78 |  | static void EraseLastKElements( | 
| 79 |  |     std::vector<T>& elements, Comparator comparator, size_t k, | 
| 80 | 0 |     std::function<bool(const NodeEvictionCandidate&)> predicate = [](const NodeEvictionCandidate& n) { return true; }) | 
| 81 | 0 | { | 
| 82 | 0 |     std::sort(elements.begin(), elements.end(), comparator); | 
| 83 | 0 |     size_t eraseSize = std::min(k, elements.size()); | 
| 84 | 0 |     elements.erase(std::remove_if(elements.end() - eraseSize, elements.end(), predicate), elements.end()); | 
| 85 | 0 | } Unexecuted instantiation: eviction.cpp:_ZL18EraseLastKElementsI21NodeEvictionCandidate22CompareNodeNetworkTimeEvRNSt3__16vectorIT_NS2_9allocatorIS4_EEEET0_mNS2_8functionIFbRKS0_EEEUnexecuted instantiation: eviction.cpp:_ZL18EraseLastKElementsI21NodeEvictionCandidatePFbRKS0_S2_EEvRNSt3__16vectorIT_NS5_9allocatorIS7_EEEET0_mNS5_8functionIFbS2_EEE | 
| 86 |  |  | 
| 87 |  | void ProtectNoBanConnections(std::vector<NodeEvictionCandidate>& eviction_candidates) | 
| 88 | 0 | { | 
| 89 | 0 |     eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(), | 
| 90 | 0 |                                              [](NodeEvictionCandidate const& n) { | 
| 91 | 0 |                                                  return n.m_noban; | 
| 92 | 0 |                                              }), | 
| 93 | 0 |                               eviction_candidates.end()); | 
| 94 | 0 | } | 
| 95 |  |  | 
| 96 |  | void ProtectOutboundConnections(std::vector<NodeEvictionCandidate>& eviction_candidates) | 
| 97 | 0 | { | 
| 98 | 0 |     eviction_candidates.erase(std::remove_if(eviction_candidates.begin(), eviction_candidates.end(), | 
| 99 | 0 |                                              [](NodeEvictionCandidate const& n) { | 
| 100 | 0 |                                                  return n.m_conn_type != ConnectionType::INBOUND; | 
| 101 | 0 |                                              }), | 
| 102 | 0 |                               eviction_candidates.end()); | 
| 103 | 0 | } | 
| 104 |  |  | 
| 105 |  | void ProtectEvictionCandidatesByRatio(std::vector<NodeEvictionCandidate>& eviction_candidates) | 
| 106 | 0 | { | 
| 107 |  |     // Protect the half of the remaining nodes which have been connected the longest. | 
| 108 |  |     // This replicates the non-eviction implicit behavior, and precludes attacks that start later. | 
| 109 |  |     // To favorise the diversity of our peer connections, reserve up to half of these protected | 
| 110 |  |     // spots for Tor/onion, localhost, I2P, and CJDNS peers, even if they're not longest uptime | 
| 111 |  |     // overall. This helps protect these higher-latency peers that tend to be otherwise | 
| 112 |  |     // disadvantaged under our eviction criteria. | 
| 113 | 0 |     const size_t initial_size = eviction_candidates.size(); | 
| 114 | 0 |     const size_t total_protect_size{initial_size / 2}; | 
| 115 |  |  | 
| 116 |  |     // Disadvantaged networks to protect. In the case of equal counts, earlier array members | 
| 117 |  |     // have the first opportunity to recover unused slots from the previous iteration. | 
| 118 | 0 |     struct Net { bool is_local; Network id; size_t count; }; | 
| 119 | 0 |     std::array<Net, 4> networks{ | 
| 120 | 0 |         {{false, NET_CJDNS, 0}, {false, NET_I2P, 0}, {/*localhost=*/true, NET_MAX, 0}, {false, NET_ONION, 0}}}; | 
| 121 |  |  | 
| 122 |  |     // Count and store the number of eviction candidates per network. | 
| 123 | 0 |     for (Net& n : networks) { | 
| 124 | 0 |         n.count = std::count_if(eviction_candidates.cbegin(), eviction_candidates.cend(), | 
| 125 | 0 |                                 [&n](const NodeEvictionCandidate& c) { | 
| 126 | 0 |                                     return n.is_local ? c.m_is_local : c.m_network == n.id; | 
| 127 | 0 |                                 }); | 
| 128 | 0 |     } | 
| 129 |  |     // Sort `networks` by ascending candidate count, to give networks having fewer candidates | 
| 130 |  |     // the first opportunity to recover unused protected slots from the previous iteration. | 
| 131 | 0 |     std::stable_sort(networks.begin(), networks.end(), [](Net a, Net b) { return a.count < b.count; }); | 
| 132 |  |  | 
| 133 |  |     // Protect up to 25% of the eviction candidates by disadvantaged network. | 
| 134 | 0 |     const size_t max_protect_by_network{total_protect_size / 2}; | 
| 135 | 0 |     size_t num_protected{0}; | 
| 136 |  | 
 | 
| 137 | 0 |     while (num_protected < max_protect_by_network) { | 
| 138 |  |         // Count the number of disadvantaged networks from which we have peers to protect. | 
| 139 | 0 |         auto num_networks = std::count_if(networks.begin(), networks.end(), [](const Net& n) { return n.count; }); | 
| 140 | 0 |         if (num_networks == 0) { | 
| 141 | 0 |             break; | 
| 142 | 0 |         } | 
| 143 | 0 |         const size_t disadvantaged_to_protect{max_protect_by_network - num_protected}; | 
| 144 | 0 |         const size_t protect_per_network{std::max(disadvantaged_to_protect / num_networks, static_cast<size_t>(1))}; | 
| 145 |  |         // Early exit flag if there are no remaining candidates by disadvantaged network. | 
| 146 | 0 |         bool protected_at_least_one{false}; | 
| 147 |  | 
 | 
| 148 | 0 |         for (Net& n : networks) { | 
| 149 | 0 |             if (n.count == 0) continue; | 
| 150 | 0 |             const size_t before = eviction_candidates.size(); | 
| 151 | 0 |             EraseLastKElements(eviction_candidates, CompareNodeNetworkTime(n.is_local, n.id), | 
| 152 | 0 |                                protect_per_network, [&n](const NodeEvictionCandidate& c) { | 
| 153 | 0 |                                    return n.is_local ? c.m_is_local : c.m_network == n.id; | 
| 154 | 0 |                                }); | 
| 155 | 0 |             const size_t after = eviction_candidates.size(); | 
| 156 | 0 |             if (before > after) { | 
| 157 | 0 |                 protected_at_least_one = true; | 
| 158 | 0 |                 const size_t delta{before - after}; | 
| 159 | 0 |                 num_protected += delta; | 
| 160 | 0 |                 if (num_protected >= max_protect_by_network) { | 
| 161 | 0 |                     break; | 
| 162 | 0 |                 } | 
| 163 | 0 |                 n.count -= delta; | 
| 164 | 0 |             } | 
| 165 | 0 |         } | 
| 166 | 0 |         if (!protected_at_least_one) { | 
| 167 | 0 |             break; | 
| 168 | 0 |         } | 
| 169 | 0 |     } | 
| 170 |  |  | 
| 171 |  |     // Calculate how many we removed, and update our total number of peers that | 
| 172 |  |     // we want to protect based on uptime accordingly. | 
| 173 | 0 |     assert(num_protected == initial_size - eviction_candidates.size()); | 
| 174 | 0 |     const size_t remaining_to_protect{total_protect_size - num_protected}; | 
| 175 | 0 |     EraseLastKElements(eviction_candidates, ReverseCompareNodeTimeConnected, remaining_to_protect); | 
| 176 | 0 | } | 
| 177 |  |  | 
| 178 |  | [[nodiscard]] std::optional<NodeId> SelectNodeToEvict(std::vector<NodeEvictionCandidate>&& vEvictionCandidates) | 
| 179 | 0 | { | 
| 180 |  |     // Protect connections with certain characteristics | 
| 181 |  | 
 | 
| 182 | 0 |     ProtectNoBanConnections(vEvictionCandidates); | 
| 183 |  | 
 | 
| 184 | 0 |     ProtectOutboundConnections(vEvictionCandidates); | 
| 185 |  |  | 
| 186 |  |     // Deterministically select 4 peers to protect by netgroup. | 
| 187 |  |     // An attacker cannot predict which netgroups will be protected | 
| 188 | 0 |     EraseLastKElements(vEvictionCandidates, CompareNetGroupKeyed, 4); | 
| 189 |  |     // Protect the 8 nodes with the lowest minimum ping time. | 
| 190 |  |     // An attacker cannot manipulate this metric without physically moving nodes closer to the target. | 
| 191 | 0 |     EraseLastKElements(vEvictionCandidates, ReverseCompareNodeMinPingTime, 8); | 
| 192 |  |     // Protect 4 nodes that most recently sent us novel transactions accepted into our mempool. | 
| 193 |  |     // An attacker cannot manipulate this metric without performing useful work. | 
| 194 | 0 |     EraseLastKElements(vEvictionCandidates, CompareNodeTXTime, 4); | 
| 195 |  |     // Protect up to 8 non-tx-relay peers that have sent us novel blocks. | 
| 196 | 0 |     EraseLastKElements(vEvictionCandidates, CompareNodeBlockRelayOnlyTime, 8, | 
| 197 | 0 |                        [](const NodeEvictionCandidate& n) { return !n.m_relay_txs && n.fRelevantServices; }); | 
| 198 |  |  | 
| 199 |  |     // Protect 4 nodes that most recently sent us novel blocks. | 
| 200 |  |     // An attacker cannot manipulate this metric without performing useful work. | 
| 201 | 0 |     EraseLastKElements(vEvictionCandidates, CompareNodeBlockTime, 4); | 
| 202 |  |  | 
| 203 |  |     // Protect some of the remaining eviction candidates by ratios of desirable | 
| 204 |  |     // or disadvantaged characteristics. | 
| 205 | 0 |     ProtectEvictionCandidatesByRatio(vEvictionCandidates); | 
| 206 |  | 
 | 
| 207 | 0 |     if (vEvictionCandidates.empty()) return std::nullopt; | 
| 208 |  |  | 
| 209 |  |     // If any remaining peers are preferred for eviction consider only them. | 
| 210 |  |     // This happens after the other preferences since if a peer is really the best by other criteria (esp relaying blocks) | 
| 211 |  |     //  then we probably don't want to evict it no matter what. | 
| 212 | 0 |     if (std::any_of(vEvictionCandidates.begin(),vEvictionCandidates.end(),[](NodeEvictionCandidate const &n){return n.prefer_evict;})) { | 
| 213 | 0 |         vEvictionCandidates.erase(std::remove_if(vEvictionCandidates.begin(),vEvictionCandidates.end(), | 
| 214 | 0 |                                   [](NodeEvictionCandidate const &n){return !n.prefer_evict;}),vEvictionCandidates.end()); | 
| 215 | 0 |     } | 
| 216 |  |  | 
| 217 |  |     // Identify the network group with the most connections and youngest member. | 
| 218 |  |     // (vEvictionCandidates is already sorted by reverse connect time) | 
| 219 | 0 |     uint64_t naMostConnections; | 
| 220 | 0 |     unsigned int nMostConnections = 0; | 
| 221 | 0 |     std::chrono::seconds nMostConnectionsTime{0}; | 
| 222 | 0 |     std::map<uint64_t, std::vector<NodeEvictionCandidate> > mapNetGroupNodes; | 
| 223 | 0 |     for (const NodeEvictionCandidate &node : vEvictionCandidates) { | 
| 224 | 0 |         std::vector<NodeEvictionCandidate> &group = mapNetGroupNodes[node.nKeyedNetGroup]; | 
| 225 | 0 |         group.push_back(node); | 
| 226 | 0 |         const auto grouptime{group[0].m_connected}; | 
| 227 |  | 
 | 
| 228 | 0 |         if (group.size() > nMostConnections || (group.size() == nMostConnections && grouptime > nMostConnectionsTime)) { | 
| 229 | 0 |             nMostConnections = group.size(); | 
| 230 | 0 |             nMostConnectionsTime = grouptime; | 
| 231 | 0 |             naMostConnections = node.nKeyedNetGroup; | 
| 232 | 0 |         } | 
| 233 | 0 |     } | 
| 234 |  |  | 
| 235 |  |     // Reduce to the network group with the most connections | 
| 236 | 0 |     vEvictionCandidates = std::move(mapNetGroupNodes[naMostConnections]); | 
| 237 |  |  | 
| 238 |  |     // Disconnect from the network group with the most connections | 
| 239 | 0 |     return vEvictionCandidates.front().id; | 
| 240 | 0 | } |