fuzz coverage

Coverage Report

Created: 2025-10-29 15:27

/Users/eugenesiegel/btc/bitcoin/src/random.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2009-2010 Satoshi Nakamoto
2
// Copyright (c) 2009-present The Bitcoin Core developers
3
// Distributed under the MIT software license, see the accompanying
4
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
5
6
#include <bitcoin-build-config.h> // IWYU pragma: keep
7
8
#include <random.h>
9
10
#include <compat/compat.h>
11
#include <compat/cpuid.h>
12
#include <crypto/chacha20.h>
13
#include <crypto/sha256.h>
14
#include <crypto/sha512.h>
15
#include <logging.h>
16
#include <randomenv.h>
17
#include <span.h>
18
#include <support/allocators/secure.h>
19
#include <support/cleanse.h>
20
#include <sync.h>
21
#include <util/time.h>
22
23
#include <array>
24
#include <cmath>
25
#include <cstdlib>
26
#include <optional>
27
#include <thread>
28
29
#ifdef WIN32
30
#include <bcrypt.h>
31
#else
32
#include <fcntl.h>
33
#include <sys/time.h>
34
#endif
35
36
#if defined(HAVE_GETRANDOM) || (defined(HAVE_GETENTROPY_RAND) && defined(__APPLE__))
37
#include <sys/random.h>
38
#endif
39
40
#ifdef HAVE_SYSCTL_ARND
41
#include <sys/sysctl.h>
42
#endif
43
44
namespace {
45
46
/* Number of random bytes returned by GetOSRand.
47
 * When changing this constant make sure to change all call sites, and make
48
 * sure that the underlying OS APIs for all platforms support the number.
49
 * (many cap out at 256 bytes).
50
 */
51
static const int NUM_OS_RANDOM_BYTES = 32;
52
53
54
[[noreturn]] void RandFailure()
55
0
{
56
0
    LogError("Failed to read randomness, aborting\n");
Line
Count
Source
358
0
#define LogError(...) LogPrintLevel_(BCLog::LogFlags::ALL, BCLog::Level::Error, /*should_ratelimit=*/true, __VA_ARGS__)
Line
Count
Source
350
0
#define LogPrintLevel_(category, level, should_ratelimit, ...) LogPrintFormatInternal(std::source_location::current(), category, level, should_ratelimit, __VA_ARGS__)
57
0
    std::abort();
58
0
}
59
60
inline int64_t GetPerformanceCounter() noexcept
61
19.5M
{
62
    // Read the hardware time stamp counter when available.
63
    // See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information.
64
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
65
    return __rdtsc();
66
#elif !defined(_MSC_VER) && defined(__i386__)
67
    uint64_t r = 0;
68
    __asm__ volatile ("rdtsc" : "=A"(r)); // Constrain the r variable to the eax:edx pair.
69
    return r;
70
#elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__))
71
    uint64_t r1 = 0, r2 = 0;
72
    __asm__ volatile ("rdtsc" : "=a"(r1), "=d"(r2)); // Constrain r1 to rax and r2 to rdx.
73
    return (r2 << 32) | r1;
74
#else
75
    // Fall back to using standard library clock (usually microsecond or nanosecond precision)
76
19.5M
    return std::chrono::high_resolution_clock::now().time_since_epoch().count();
77
19.5M
#endif
78
19.5M
}
79
80
#ifdef HAVE_GETCPUID
81
bool g_rdrand_supported = false;
82
bool g_rdseed_supported = false;
83
constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000;
84
constexpr uint32_t CPUID_F7_EBX_RDSEED = 0x00040000;
85
#ifdef bit_RDRND
86
static_assert(CPUID_F1_ECX_RDRAND == bit_RDRND, "Unexpected value for bit_RDRND");
87
#endif
88
#ifdef bit_RDSEED
89
static_assert(CPUID_F7_EBX_RDSEED == bit_RDSEED, "Unexpected value for bit_RDSEED");
90
#endif
91
92
void InitHardwareRand()
93
{
94
    uint32_t eax, ebx, ecx, edx;
95
    GetCPUID(1, 0, eax, ebx, ecx, edx);
96
    if (ecx & CPUID_F1_ECX_RDRAND) {
97
        g_rdrand_supported = true;
98
    }
99
    GetCPUID(7, 0, eax, ebx, ecx, edx);
100
    if (ebx & CPUID_F7_EBX_RDSEED) {
101
        g_rdseed_supported = true;
102
    }
103
}
104
105
void ReportHardwareRand()
106
{
107
    // This must be done in a separate function, as InitHardwareRand() may be indirectly called
108
    // from global constructors, before logging is initialized.
109
    if (g_rdseed_supported) {
110
        LogInfo("Using RdSeed as an additional entropy source");
111
    }
112
    if (g_rdrand_supported) {
113
        LogInfo("Using RdRand as an additional entropy source");
114
    }
115
}
116
117
/** Read 64 bits of entropy using rdrand.
118
 *
119
 * Must only be called when RdRand is supported.
120
 */
121
uint64_t GetRdRand() noexcept
122
{
123
    // RdRand may very rarely fail. Invoke it up to 10 times in a loop to reduce this risk.
124
#ifdef __i386__
125
    uint8_t ok = 0;
126
    // Initialize to 0 to silence a compiler warning that r1 or r2 may be used
127
    // uninitialized. Even if rdrand fails (!ok) it will set the output to 0,
128
    // but there is no way that the compiler could know that.
129
    uint32_t r1 = 0, r2 = 0;
130
    for (int i = 0; i < 10; ++i) {
131
        __asm__ volatile (".byte 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdrand %eax
132
        if (ok) break;
133
    }
134
    for (int i = 0; i < 10; ++i) {
135
        __asm__ volatile (".byte 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r2), "=q"(ok) :: "cc"); // rdrand %eax
136
        if (ok) break;
137
    }
138
    return (((uint64_t)r2) << 32) | r1;
139
#elif defined(__x86_64__) || defined(__amd64__)
140
    uint8_t ok = 0;
141
    uint64_t r1 = 0; // See above why we initialize to 0.
142
    for (int i = 0; i < 10; ++i) {
143
        __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdrand %rax
144
        if (ok) break;
145
    }
146
    return r1;
147
#else
148
#error "RdRand is only supported on x86 and x86_64"
149
#endif
150
}
151
152
/** Read 64 bits of entropy using rdseed.
153
 *
154
 * Must only be called when RdSeed is supported.
155
 */
156
uint64_t GetRdSeed() noexcept
157
{
158
    // RdSeed may fail when the HW RNG is overloaded. Loop indefinitely until enough entropy is gathered,
159
    // but pause after every failure.
160
#ifdef __i386__
161
    uint8_t ok = 0;
162
    uint32_t r1, r2;
163
    do {
164
        __asm__ volatile (".byte 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdseed %eax
165
        if (ok) break;
166
        __asm__ volatile ("pause");
167
    } while(true);
168
    do {
169
        __asm__ volatile (".byte 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r2), "=q"(ok) :: "cc"); // rdseed %eax
170
        if (ok) break;
171
        __asm__ volatile ("pause");
172
    } while(true);
173
    return (((uint64_t)r2) << 32) | r1;
174
#elif defined(__x86_64__) || defined(__amd64__)
175
    uint8_t ok;
176
    uint64_t r1;
177
    do {
178
        __asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf8; setc %1" : "=a"(r1), "=q"(ok) :: "cc"); // rdseed %rax
179
        if (ok) break;
180
        __asm__ volatile ("pause");
181
    } while(true);
182
    return r1;
183
#else
184
#error "RdSeed is only supported on x86 and x86_64"
185
#endif
186
}
187
188
#else
189
/* Access to other hardware random number generators could be added here later,
190
 * assuming it is sufficiently fast (in the order of a few hundred CPU cycles).
191
 * Slower sources should probably be invoked separately, and/or only from
192
 * RandAddPeriodic (which is called once a minute).
193
 */
194
0
void InitHardwareRand() {}
195
0
void ReportHardwareRand() {}
196
#endif
197
198
/** Add 64 bits of entropy gathered from hardware to hasher. Do nothing if not supported. */
199
12.7M
void SeedHardwareFast(CSHA512& hasher) noexcept {
200
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
201
    if (g_rdrand_supported) {
202
        uint64_t out = GetRdRand();
203
        hasher.Write((const unsigned char*)&out, sizeof(out));
204
        return;
205
    }
206
#endif
207
12.7M
}
208
209
/** Add 256 bits of entropy gathered from hardware to hasher. Do nothing if not supported. */
210
0
void SeedHardwareSlow(CSHA512& hasher) noexcept {
211
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
212
    // When we want 256 bits of entropy, prefer RdSeed over RdRand, as it's
213
    // guaranteed to produce independent randomness on every call.
214
    if (g_rdseed_supported) {
215
        for (int i = 0; i < 4; ++i) {
216
            uint64_t out = GetRdSeed();
217
            hasher.Write((const unsigned char*)&out, sizeof(out));
218
        }
219
        return;
220
    }
221
    // When falling back to RdRand, XOR the result of 1024 results.
222
    // This guarantees a reseeding occurs between each.
223
    if (g_rdrand_supported) {
224
        for (int i = 0; i < 4; ++i) {
225
            uint64_t out = 0;
226
            for (int j = 0; j < 1024; ++j) out ^= GetRdRand();
227
            hasher.Write((const unsigned char*)&out, sizeof(out));
228
        }
229
        return;
230
    }
231
#endif
232
0
}
233
234
/** Use repeated SHA512 to strengthen the randomness in seed32, and feed into hasher. */
235
void Strengthen(const unsigned char (&seed)[32], SteadyClock::duration dur, CSHA512& hasher) noexcept
236
0
{
237
0
    CSHA512 inner_hasher;
238
0
    inner_hasher.Write(seed, sizeof(seed));
239
240
    // Hash loop
241
0
    unsigned char buffer[64];
242
0
    const auto stop{SteadyClock::now() + dur};
243
0
    do {
244
0
        for (int i = 0; i < 1000; ++i) {
245
0
            inner_hasher.Finalize(buffer);
246
0
            inner_hasher.Reset();
247
0
            inner_hasher.Write(buffer, sizeof(buffer));
248
0
        }
249
        // Benchmark operation and feed it into outer hasher.
250
0
        int64_t perf = GetPerformanceCounter();
251
0
        hasher.Write((const unsigned char*)&perf, sizeof(perf));
252
0
    } while (SteadyClock::now() < stop);
253
254
    // Produce output from inner state and feed it to outer hasher.
255
0
    inner_hasher.Finalize(buffer);
256
0
    hasher.Write(buffer, sizeof(buffer));
257
    // Try to clean up.
258
0
    inner_hasher.Reset();
259
0
    memory_cleanse(buffer, sizeof(buffer));
260
0
}
261
262
#ifndef WIN32
263
/** Fallback: get 32 bytes of system entropy from /dev/urandom. The most
264
 * compatible way to get cryptographic randomness on UNIX-ish platforms.
265
 */
266
[[maybe_unused]] void GetDevURandom(unsigned char *ent32)
267
0
{
268
0
    int f = open("/dev/urandom", O_RDONLY);
269
0
    if (f == -1) {
270
0
        RandFailure();
271
0
    }
272
0
    int have = 0;
273
0
    do {
274
0
        ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have);
275
0
        if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) {
276
0
            close(f);
277
0
            RandFailure();
278
0
        }
279
0
        have += n;
280
0
    } while (have < NUM_OS_RANDOM_BYTES);
281
0
    close(f);
282
0
}
283
#endif
284
285
/** Get 32 bytes of system entropy. */
286
void GetOSRand(unsigned char *ent32)
287
51.2k
{
288
#if defined(WIN32)
289
    constexpr uint32_t STATUS_SUCCESS{0x00000000};
290
    NTSTATUS status = BCryptGenRandom(/*hAlgorithm=*/NULL,
291
                                      /*pbBuffer=*/ent32,
292
                                      /*cbBuffer=*/NUM_OS_RANDOM_BYTES,
293
                                      /*dwFlags=*/BCRYPT_USE_SYSTEM_PREFERRED_RNG);
294
295
    if (status != STATUS_SUCCESS) {
296
        RandFailure();
297
    }
298
#elif defined(HAVE_GETRANDOM)
299
    /* Linux. From the getrandom(2) man page:
300
     * "If the urandom source has been initialized, reads of up to 256 bytes
301
     * will always return as many bytes as requested and will not be
302
     * interrupted by signals."
303
     */
304
    if (getrandom(ent32, NUM_OS_RANDOM_BYTES, 0) != NUM_OS_RANDOM_BYTES) {
305
        RandFailure();
306
    }
307
#elif defined(__OpenBSD__)
308
    /* OpenBSD. From the arc4random(3) man page:
309
       "Use of these functions is encouraged for almost all random number
310
        consumption because the other interfaces are deficient in either
311
        quality, portability, standardization, or availability."
312
       The function call is always successful.
313
     */
314
    arc4random_buf(ent32, NUM_OS_RANDOM_BYTES);
315
#elif defined(HAVE_GETENTROPY_RAND) && defined(__APPLE__)
316
51.2k
    if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) {
317
0
        RandFailure();
318
0
    }
319
#elif defined(HAVE_SYSCTL_ARND)
320
    /* FreeBSD, NetBSD and similar. It is possible for the call to return less
321
     * bytes than requested, so need to read in a loop.
322
     */
323
    static int name[2] = {CTL_KERN, KERN_ARND};
324
    int have = 0;
325
    do {
326
        size_t len = NUM_OS_RANDOM_BYTES - have;
327
        if (sysctl(name, std::size(name), ent32 + have, &len, nullptr, 0) != 0) {
328
            RandFailure();
329
        }
330
        have += len;
331
    } while (have < NUM_OS_RANDOM_BYTES);
332
#else
333
    /* Fall back to /dev/urandom if there is no specific method implemented to
334
     * get system entropy for this OS.
335
     */
336
    GetDevURandom(ent32);
337
#endif
338
51.2k
}
339
340
class RNGState {
341
    Mutex m_mutex;
342
    /* The RNG state consists of 256 bits of entropy, taken from the output of
343
     * one operation's SHA512 output, and fed as input to the next one.
344
     * Carrying 256 bits of entropy should be sufficient to guarantee
345
     * unpredictability as long as any entropy source was ever unpredictable
346
     * to an attacker. To protect against situations where an attacker might
347
     * observe the RNG's state, fresh entropy is always mixed when
348
     * GetStrongRandBytes is called.
349
     */
350
    unsigned char m_state[32] GUARDED_BY(m_mutex) = {0};
351
    uint64_t m_counter GUARDED_BY(m_mutex) = 0;
352
    bool m_strongly_seeded GUARDED_BY(m_mutex) = false;
353
354
    /** If not nullopt, the output of this RNGState is redirected and drawn from here
355
     *  (unless always_use_real_rng is passed to MixExtract). */
356
    std::optional<ChaCha20> m_deterministic_prng GUARDED_BY(m_mutex);
357
358
    Mutex m_events_mutex;
359
    CSHA256 m_events_hasher GUARDED_BY(m_events_mutex);
360
361
public:
362
    RNGState() noexcept
363
0
    {
364
0
        InitHardwareRand();
365
0
    }
366
367
0
    ~RNGState() = default;
368
369
    void AddEvent(uint32_t event_info) noexcept EXCLUSIVE_LOCKS_REQUIRED(!m_events_mutex)
370
6.84M
    {
371
6.84M
        LOCK(m_events_mutex);
Line
Count
Source
259
6.84M
#define LOCK(cs) UniqueLock UNIQUE_NAME(criticalblock)(MaybeCheckNotHeld(cs), #cs, __FILE__, __LINE__)
Line
Count
Source
11
6.84M
#define UNIQUE_NAME(name) PASTE2(name, __COUNTER__)
Line
Count
Source
9
6.84M
#define PASTE2(x, y) PASTE(x, y)
Line
Count
Source
8
6.84M
#define PASTE(x, y) x ## y
372
373
6.84M
        m_events_hasher.Write((const unsigned char *)&event_info, sizeof(event_info));
374
        // Get the low four bytes of the performance counter. This translates to roughly the
375
        // subsecond part.
376
6.84M
        uint32_t perfcounter = (GetPerformanceCounter() & 0xffffffff);
377
6.84M
        m_events_hasher.Write((const unsigned char*)&perfcounter, sizeof(perfcounter));
378
6.84M
    }
379
380
    /**
381
     * Feed (the hash of) all events added through AddEvent() to hasher.
382
     */
383
    void SeedEvents(CSHA512& hasher) noexcept EXCLUSIVE_LOCKS_REQUIRED(!m_events_mutex)
384
51.2k
    {
385
        // We use only SHA256 for the events hashing to get the ASM speedups we have for SHA256,
386
        // since we want it to be fast as network peers may be able to trigger it repeatedly.
387
51.2k
        LOCK(m_events_mutex);
Line
Count
Source
259
51.2k
#define LOCK(cs) UniqueLock UNIQUE_NAME(criticalblock)(MaybeCheckNotHeld(cs), #cs, __FILE__, __LINE__)
Line
Count
Source
11
51.2k
#define UNIQUE_NAME(name) PASTE2(name, __COUNTER__)
Line
Count
Source
9
51.2k
#define PASTE2(x, y) PASTE(x, y)
Line
Count
Source
8
51.2k
#define PASTE(x, y) x ## y
388
389
51.2k
        unsigned char events_hash[32];
390
51.2k
        m_events_hasher.Finalize(events_hash);
391
51.2k
        hasher.Write(events_hash, 32);
392
393
        // Re-initialize the hasher with the finalized state to use later.
394
51.2k
        m_events_hasher.Reset();
395
51.2k
        m_events_hasher.Write(events_hash, 32);
396
51.2k
    }
397
398
    /** Make the output of MixExtract (unless always_use_real_rng) deterministic, with specified seed. */
399
    void MakeDeterministic(const uint256& seed) noexcept EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
400
51.2k
    {
401
51.2k
        LOCK(m_mutex);
Line
Count
Source
259
51.2k
#define LOCK(cs) UniqueLock UNIQUE_NAME(criticalblock)(MaybeCheckNotHeld(cs), #cs, __FILE__, __LINE__)
Line
Count
Source
11
51.2k
#define UNIQUE_NAME(name) PASTE2(name, __COUNTER__)
Line
Count
Source
9
51.2k
#define PASTE2(x, y) PASTE(x, y)
Line
Count
Source
8
51.2k
#define PASTE(x, y) x ## y
402
51.2k
        m_deterministic_prng.emplace(MakeByteSpan(seed));
403
51.2k
    }
404
405
    /** Extract up to 32 bytes of entropy from the RNG state, mixing in new entropy from hasher.
406
     *
407
     * If this function has never been called with strong_seed = true, false is returned.
408
     *
409
     * If always_use_real_rng is false, and MakeDeterministic has been called before, output
410
     * from the deterministic PRNG instead.
411
     */
412
    bool MixExtract(unsigned char* out, size_t num, CSHA512&& hasher, bool strong_seed, bool always_use_real_rng) noexcept EXCLUSIVE_LOCKS_REQUIRED(!m_mutex)
413
12.7M
    {
414
12.7M
        assert(num <= 32);
415
12.7M
        unsigned char buf[64];
416
12.7M
        static_assert(sizeof(buf) == CSHA512::OUTPUT_SIZE, "Buffer needs to have hasher's output size");
417
12.7M
        bool ret;
418
12.7M
        {
419
12.7M
            LOCK(m_mutex);
Line
Count
Source
259
12.7M
#define LOCK(cs) UniqueLock UNIQUE_NAME(criticalblock)(MaybeCheckNotHeld(cs), #cs, __FILE__, __LINE__)
Line
Count
Source
11
12.7M
#define UNIQUE_NAME(name) PASTE2(name, __COUNTER__)
Line
Count
Source
9
12.7M
#define PASTE2(x, y) PASTE(x, y)
Line
Count
Source
8
12.7M
#define PASTE(x, y) x ## y
420
12.7M
            ret = (m_strongly_seeded |= strong_seed);
421
            // Write the current state of the RNG into the hasher
422
12.7M
            hasher.Write(m_state, 32);
423
            // Write a new counter number into the state
424
12.7M
            hasher.Write((const unsigned char*)&m_counter, sizeof(m_counter));
425
12.7M
            ++m_counter;
426
            // Finalize the hasher
427
12.7M
            hasher.Finalize(buf);
428
            // Store the last 32 bytes of the hash output as new RNG state.
429
12.7M
            memcpy(m_state, buf + 32, 32);
430
            // Handle requests for deterministic randomness.
431
12.7M
            if (!always_use_real_rng && 
m_deterministic_prng.has_value()12.6M
) [[unlikely]] {
432
                // Overwrite the beginning of buf, which will be used for output.
433
12.6M
                m_deterministic_prng->Keystream(std::as_writable_bytes(std::span{buf, num}));
434
                // Do not require strong seeding for deterministic output.
435
12.6M
                ret = true;
436
12.6M
            }
437
12.7M
        }
438
        // If desired, copy (up to) the first 32 bytes of the hash output as output.
439
12.7M
        if (num) {
440
12.7M
            assert(out != nullptr);
441
12.7M
            memcpy(out, buf, num);
442
12.7M
        }
443
        // Best effort cleanup of internal state
444
12.7M
        hasher.Reset();
445
12.7M
        memory_cleanse(buf, 64);
446
12.7M
        return ret;
447
12.7M
    }
448
};
449
450
RNGState& GetRNGState() noexcept
451
19.5M
{
452
    // This idiom relies on the guarantee that static variable are initialized
453
    // on first call, even when multiple parallel calls are permitted.
454
19.5M
    static std::vector<RNGState, secure_allocator<RNGState>> g_rng(1);
455
19.5M
    return g_rng[0];
456
19.5M
}
457
458
/* A note on the use of noexcept in the seeding functions below:
459
 *
460
 * None of the RNG code should ever throw any exception.
461
 */
462
463
void SeedTimestamp(CSHA512& hasher) noexcept
464
12.7M
{
465
12.7M
    int64_t perfcounter = GetPerformanceCounter();
466
12.7M
    hasher.Write((const unsigned char*)&perfcounter, sizeof(perfcounter));
467
12.7M
}
468
469
void SeedFast(CSHA512& hasher) noexcept
470
12.7M
{
471
12.7M
    unsigned char buffer[32];
472
473
    // Stack pointer to indirectly commit to thread/callstack
474
12.7M
    const unsigned char* ptr = buffer;
475
12.7M
    hasher.Write((const unsigned char*)&ptr, sizeof(ptr));
476
477
    // Hardware randomness is very fast when available; use it always.
478
12.7M
    SeedHardwareFast(hasher);
479
480
    // High-precision timestamp
481
12.7M
    SeedTimestamp(hasher);
482
12.7M
}
483
484
void SeedSlow(CSHA512& hasher, RNGState& rng) noexcept
485
51.2k
{
486
51.2k
    unsigned char buffer[32];
487
488
    // Everything that the 'fast' seeder includes
489
51.2k
    SeedFast(hasher);
490
491
    // OS randomness
492
51.2k
    GetOSRand(buffer);
493
51.2k
    hasher.Write(buffer, sizeof(buffer));
494
495
    // Add the events hasher into the mix
496
51.2k
    rng.SeedEvents(hasher);
497
498
    // High-precision timestamp.
499
    //
500
    // Note that we also commit to a timestamp in the Fast seeder, so we indirectly commit to a
501
    // benchmark of all the entropy gathering sources in this function).
502
51.2k
    SeedTimestamp(hasher);
503
51.2k
}
504
505
/** Extract entropy from rng, strengthen it, and feed it into hasher. */
506
void SeedStrengthen(CSHA512& hasher, RNGState& rng, SteadyClock::duration dur) noexcept
507
0
{
508
    // Generate 32 bytes of entropy from the RNG, and a copy of the entropy already in hasher.
509
    // Never use the deterministic PRNG for this, as the result is only used internally.
510
0
    unsigned char strengthen_seed[32];
511
0
    rng.MixExtract(strengthen_seed, sizeof(strengthen_seed), CSHA512(hasher), false, /*always_use_real_rng=*/true);
512
    // Strengthen the seed, and feed it into hasher.
513
0
    Strengthen(strengthen_seed, dur, hasher);
514
0
}
515
516
void SeedPeriodic(CSHA512& hasher, RNGState& rng) noexcept
517
0
{
518
    // Everything that the 'fast' seeder includes
519
0
    SeedFast(hasher);
520
521
    // High-precision timestamp
522
0
    SeedTimestamp(hasher);
523
524
    // Add the events hasher into the mix
525
0
    rng.SeedEvents(hasher);
526
527
    // Dynamic environment data (clocks, resource usage, ...)
528
0
    auto old_size = hasher.Size();
529
0
    RandAddDynamicEnv(hasher);
530
0
    LogDebug(BCLog::RAND, "Feeding %i bytes of dynamic environment data into RNG\n", hasher.Size() - old_size);
Line
Count
Source
381
0
#define LogDebug(category, ...) LogPrintLevel(category, BCLog::Level::Debug, __VA_ARGS__)
Line
Count
Source
373
0
    do {                                                              \
374
0
        if (LogAcceptCategory((category), (level))) {                 \
375
0
            bool rate_limit{level >= BCLog::Level::Info};             \
376
0
            LogPrintLevel_(category, level, rate_limit, __VA_ARGS__); \
Line
Count
Source
350
0
#define LogPrintLevel_(category, level, should_ratelimit, ...) LogPrintFormatInternal(std::source_location::current(), category, level, should_ratelimit, __VA_ARGS__)
377
0
        }                                                             \
378
0
    } while (0)
531
532
    // Strengthen for 10 ms
533
0
    SeedStrengthen(hasher, rng, 10ms);
534
0
}
535
536
void SeedStartup(CSHA512& hasher, RNGState& rng) noexcept
537
0
{
538
    // Gather 256 bits of hardware randomness, if available
539
0
    SeedHardwareSlow(hasher);
540
541
    // Everything that the 'slow' seeder includes.
542
0
    SeedSlow(hasher, rng);
543
544
    // Dynamic environment data (clocks, resource usage, ...)
545
0
    auto old_size = hasher.Size();
546
0
    RandAddDynamicEnv(hasher);
547
548
    // Static environment data
549
0
    RandAddStaticEnv(hasher);
550
0
    LogDebug(BCLog::RAND, "Feeding %i bytes of environment data into RNG\n", hasher.Size() - old_size);
Line
Count
Source
381
0
#define LogDebug(category, ...) LogPrintLevel(category, BCLog::Level::Debug, __VA_ARGS__)
Line
Count
Source
373
0
    do {                                                              \
374
0
        if (LogAcceptCategory((category), (level))) {                 \
375
0
            bool rate_limit{level >= BCLog::Level::Info};             \
376
0
            LogPrintLevel_(category, level, rate_limit, __VA_ARGS__); \
Line
Count
Source
350
0
#define LogPrintLevel_(category, level, should_ratelimit, ...) LogPrintFormatInternal(std::source_location::current(), category, level, should_ratelimit, __VA_ARGS__)
377
0
        }                                                             \
378
0
    } while (0)
551
552
    // Strengthen for 100 ms
553
0
    SeedStrengthen(hasher, rng, 100ms);
554
0
}
555
556
enum class RNGLevel {
557
    FAST, //!< Automatically called by GetRandBytes
558
    SLOW, //!< Automatically called by GetStrongRandBytes
559
    PERIODIC, //!< Called by RandAddPeriodic()
560
};
561
562
void ProcRand(unsigned char* out, int num, RNGLevel level, bool always_use_real_rng) noexcept
563
12.7M
{
564
    // Make sure the RNG is initialized first (as all Seed* function possibly need hwrand to be available).
565
12.7M
    RNGState& rng = GetRNGState();
566
567
12.7M
    assert(num <= 32);
568
569
12.7M
    CSHA512 hasher;
570
12.7M
    switch (level) {
571
12.6M
    case RNGLevel::FAST:
572
12.6M
        SeedFast(hasher);
573
12.6M
        break;
574
51.2k
    case RNGLevel::SLOW:
575
51.2k
        SeedSlow(hasher, rng);
576
51.2k
        break;
577
0
    case RNGLevel::PERIODIC:
578
0
        SeedPeriodic(hasher, rng);
579
0
        break;
580
12.7M
    }
581
582
    // Combine with and update state
583
12.7M
    if (!rng.MixExtract(out, num, std::move(hasher), false, always_use_real_rng)) {
584
        // On the first invocation, also seed with SeedStartup().
585
0
        CSHA512 startup_hasher;
586
0
        SeedStartup(startup_hasher, rng);
587
0
        rng.MixExtract(out, num, std::move(startup_hasher), true, always_use_real_rng);
588
0
    }
589
12.7M
}
590
591
} // namespace
592
593
594
/** Internal function to set g_determinstic_rng. Only accessed from tests. */
595
void MakeRandDeterministicDANGEROUS(const uint256& seed) noexcept
596
51.2k
{
597
51.2k
    GetRNGState().MakeDeterministic(seed);
598
51.2k
}
599
std::atomic<bool> g_used_g_prng{false}; // Only accessed from tests
600
601
void GetRandBytes(std::span<unsigned char> bytes) noexcept
602
12.6M
{
603
12.6M
    g_used_g_prng = true;
604
12.6M
    ProcRand(bytes.data(), bytes.size(), RNGLevel::FAST, /*always_use_real_rng=*/false);
605
12.6M
}
606
607
void GetStrongRandBytes(std::span<unsigned char> bytes) noexcept
608
51.2k
{
609
51.2k
    ProcRand(bytes.data(), bytes.size(), RNGLevel::SLOW, /*always_use_real_rng=*/true);
610
51.2k
}
611
612
void RandAddPeriodic() noexcept
613
0
{
614
0
    ProcRand(nullptr, 0, RNGLevel::PERIODIC, /*always_use_real_rng=*/false);
615
0
}
616
617
6.84M
void RandAddEvent(const uint32_t event_info) noexcept { GetRNGState().AddEvent(event_info); }
618
619
void FastRandomContext::RandomSeed() noexcept
620
12.5M
{
621
12.5M
    uint256 seed = GetRandHash();
622
12.5M
    rng.SetKey(MakeByteSpan(seed));
623
12.5M
    requires_seed = false;
624
12.5M
}
625
626
void FastRandomContext::fillrand(std::span<std::byte> output) noexcept
627
51.2k
{
628
51.2k
    if (requires_seed) RandomSeed();
629
51.2k
    rng.Keystream(output);
630
51.2k
}
631
632
0
FastRandomContext::FastRandomContext(const uint256& seed) noexcept : requires_seed(false), rng(MakeByteSpan(seed)) {}
633
634
void FastRandomContext::Reseed(const uint256& seed) noexcept
635
0
{
636
0
    FlushCache();
637
0
    requires_seed = false;
638
0
    rng = {MakeByteSpan(seed)};
639
0
}
640
641
bool Random_SanityCheck()
642
0
{
643
0
    uint64_t start = GetPerformanceCounter();
644
645
    /* This does not measure the quality of randomness, but it does test that
646
     * GetOSRand() overwrites all 32 bytes of the output given a maximum
647
     * number of tries.
648
     */
649
0
    static constexpr int MAX_TRIES{1024};
650
0
    uint8_t data[NUM_OS_RANDOM_BYTES];
651
0
    bool overwritten[NUM_OS_RANDOM_BYTES] = {}; /* Tracks which bytes have been overwritten at least once */
652
0
    int num_overwritten;
653
0
    int tries = 0;
654
    /* Loop until all bytes have been overwritten at least once, or max number tries reached */
655
0
    do {
656
0
        memset(data, 0, NUM_OS_RANDOM_BYTES);
657
0
        GetOSRand(data);
658
0
        for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
659
0
            overwritten[x] |= (data[x] != 0);
660
0
        }
661
662
0
        num_overwritten = 0;
663
0
        for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
664
0
            if (overwritten[x]) {
665
0
                num_overwritten += 1;
666
0
            }
667
0
        }
668
669
0
        tries += 1;
670
0
    } while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES);
671
0
    if (num_overwritten != NUM_OS_RANDOM_BYTES) return false; /* If this failed, bailed out after too many tries */
672
673
    // Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep.
674
0
    std::this_thread::sleep_for(std::chrono::milliseconds(1));
675
0
    uint64_t stop = GetPerformanceCounter();
676
0
    if (stop == start) return false;
677
678
    // We called GetPerformanceCounter. Use it as entropy.
679
0
    CSHA512 to_add;
680
0
    to_add.Write((const unsigned char*)&start, sizeof(start));
681
0
    to_add.Write((const unsigned char*)&stop, sizeof(stop));
682
0
    GetRNGState().MixExtract(nullptr, 0, std::move(to_add), false, /*always_use_real_rng=*/true);
683
684
0
    return true;
685
0
}
686
687
static constexpr std::array<std::byte, ChaCha20::KEYLEN> ZERO_KEY{};
688
689
15.4M
FastRandomContext::FastRandomContext(bool fDeterministic) noexcept : requires_seed(!fDeterministic), rng(ZERO_KEY)
690
15.4M
{
691
    // Note that despite always initializing with ZERO_KEY, requires_seed is set to true if not
692
    // fDeterministic. That means the rng will be reinitialized with a secure random key upon first
693
    // use.
694
15.4M
}
695
696
void RandomInit()
697
0
{
698
    // Invoke RNG code to trigger initialization (if not already performed)
699
0
    ProcRand(nullptr, 0, RNGLevel::FAST, /*always_use_real_rng=*/true);
700
701
0
    ReportHardwareRand();
702
0
}
703
704
double MakeExponentiallyDistributed(uint64_t uniform) noexcept
705
119k
{
706
    // To convert uniform into an exponentially-distributed double, we use two steps:
707
    // - Convert uniform into a uniformly-distributed double in range [0, 1), use the expression
708
    //   ((uniform >> 11) * 0x1.0p-53), as described in https://prng.di.unimi.it/ under
709
    //   "Generating uniform doubles in the unit interval". Call this value x.
710
    // - Given an x in uniformly distributed in [0, 1), we find an exponentially distributed value
711
    //   by applying the quantile function to it. For the exponential distribution with mean 1 this
712
    //   is F(x) = -log(1 - x).
713
    //
714
    // Combining the two, and using log1p(x) = log(1 + x), we obtain the following:
715
119k
    return -std::log1p((uniform >> 11) * -0x1.0p-53);
716
119k
}