fuzz coverage

Coverage Report

Created: 2025-06-01 19:34

/Users/eugenesiegel/btc/bitcoin/src/script/descriptor.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2018-present The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#include <script/descriptor.h>
6
7
#include <hash.h>
8
#include <key_io.h>
9
#include <pubkey.h>
10
#include <script/miniscript.h>
11
#include <script/parsing.h>
12
#include <script/script.h>
13
#include <script/signingprovider.h>
14
#include <script/solver.h>
15
#include <uint256.h>
16
17
#include <common/args.h>
18
#include <span.h>
19
#include <util/bip32.h>
20
#include <util/check.h>
21
#include <util/strencodings.h>
22
#include <util/vector.h>
23
24
#include <algorithm>
25
#include <memory>
26
#include <numeric>
27
#include <optional>
28
#include <string>
29
#include <vector>
30
31
using util::Split;
32
33
namespace {
34
35
////////////////////////////////////////////////////////////////////////////
36
// Checksum                                                               //
37
////////////////////////////////////////////////////////////////////////////
38
39
// This section implements a checksum algorithm for descriptors with the
40
// following properties:
41
// * Mistakes in a descriptor string are measured in "symbol errors". The higher
42
//   the number of symbol errors, the harder it is to detect:
43
//   * An error substituting a character from 0123456789()[],'/*abcdefgh@:$%{} for
44
//     another in that set always counts as 1 symbol error.
45
//     * Note that hex encoded keys are covered by these characters. Xprvs and
46
//       xpubs use other characters too, but already have their own checksum
47
//       mechanism.
48
//     * Function names like "multi()" use other characters, but mistakes in
49
//       these would generally result in an unparsable descriptor.
50
//   * A case error always counts as 1 symbol error.
51
//   * Any other 1 character substitution error counts as 1 or 2 symbol errors.
52
// * Any 1 symbol error is always detected.
53
// * Any 2 or 3 symbol error in a descriptor of up to 49154 characters is always detected.
54
// * Any 4 symbol error in a descriptor of up to 507 characters is always detected.
55
// * Any 5 symbol error in a descriptor of up to 77 characters is always detected.
56
// * Is optimized to minimize the chance a 5 symbol error in a descriptor up to 387 characters is undetected
57
// * Random errors have a chance of 1 in 2**40 of being undetected.
58
//
59
// These properties are achieved by expanding every group of 3 (non checksum) characters into
60
// 4 GF(32) symbols, over which a cyclic code is defined.
61
62
/*
63
 * Interprets c as 8 groups of 5 bits which are the coefficients of a degree 8 polynomial over GF(32),
64
 * multiplies that polynomial by x, computes its remainder modulo a generator, and adds the constant term val.
65
 *
66
 * This generator is G(x) = x^8 + {30}x^7 + {23}x^6 + {15}x^5 + {14}x^4 + {10}x^3 + {6}x^2 + {12}x + {9}.
67
 * It is chosen to define an cyclic error detecting code which is selected by:
68
 * - Starting from all BCH codes over GF(32) of degree 8 and below, which by construction guarantee detecting
69
 *   3 errors in windows up to 19000 symbols.
70
 * - Taking all those generators, and for degree 7 ones, extend them to degree 8 by adding all degree-1 factors.
71
 * - Selecting just the set of generators that guarantee detecting 4 errors in a window of length 512.
72
 * - Selecting one of those with best worst-case behavior for 5 errors in windows of length up to 512.
73
 *
74
 * The generator and the constants to implement it can be verified using this Sage code:
75
 *   B = GF(2) # Binary field
76
 *   BP.<b> = B[] # Polynomials over the binary field
77
 *   F_mod = b**5 + b**3 + 1
78
 *   F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition
79
 *   FP.<x> = F[] # Polynomials over GF(32)
80
 *   E_mod = x**3 + x + F.fetch_int(8)
81
 *   E.<e> = F.extension(E_mod) # Extension field definition
82
 *   alpha = e**2743 # Choice of an element in extension field
83
 *   for p in divisors(E.order() - 1): # Verify alpha has order 32767.
84
 *       assert((alpha**p == 1) == (p % 32767 == 0))
85
 *   G = lcm([(alpha**i).minpoly() for i in [1056,1057,1058]] + [x + 1])
86
 *   print(G) # Print out the generator
87
 *   for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(G mod x^8), packed in hex integers.
88
 *       v = 0
89
 *       for coef in reversed((F.fetch_int(i)*(G % x**8)).coefficients(sparse=True)):
90
 *           v = v*32 + coef.integer_representation()
91
 *       print("0x%x" % v)
92
 */
93
uint64_t PolyMod(uint64_t c, int val)
94
0
{
95
0
    uint8_t c0 = c >> 35;
96
0
    c = ((c & 0x7ffffffff) << 5) ^ val;
97
0
    if (c0 & 1) c ^= 0xf5dee51989;
98
0
    if (c0 & 2) c ^= 0xa9fdca3312;
99
0
    if (c0 & 4) c ^= 0x1bab10e32d;
100
0
    if (c0 & 8) c ^= 0x3706b1677a;
101
0
    if (c0 & 16) c ^= 0x644d626ffd;
102
0
    return c;
103
0
}
104
105
std::string DescriptorChecksum(const std::span<const char>& span)
106
0
{
107
    /** A character set designed such that:
108
     *  - The most common 'unprotected' descriptor characters (hex, keypaths) are in the first group of 32.
109
     *  - Case errors cause an offset that's a multiple of 32.
110
     *  - As many alphabetic characters are in the same group (while following the above restrictions).
111
     *
112
     * If p(x) gives the position of a character c in this character set, every group of 3 characters
113
     * (a,b,c) is encoded as the 4 symbols (p(a) & 31, p(b) & 31, p(c) & 31, (p(a) / 32) + 3 * (p(b) / 32) + 9 * (p(c) / 32).
114
     * This means that changes that only affect the lower 5 bits of the position, or only the higher 2 bits, will just
115
     * affect a single symbol.
116
     *
117
     * As a result, within-group-of-32 errors count as 1 symbol, as do cross-group errors that don't affect
118
     * the position within the groups.
119
     */
120
0
    static const std::string INPUT_CHARSET =
121
0
        "0123456789()[],'/*abcdefgh@:$%{}"
122
0
        "IJKLMNOPQRSTUVWXYZ&+-.;<=>?!^_|~"
123
0
        "ijklmnopqrstuvwxyzABCDEFGH`#\"\\ ";
124
125
    /** The character set for the checksum itself (same as bech32). */
126
0
    static const std::string CHECKSUM_CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
127
128
0
    uint64_t c = 1;
129
0
    int cls = 0;
130
0
    int clscount = 0;
131
0
    for (auto ch : span) {
132
0
        auto pos = INPUT_CHARSET.find(ch);
133
0
        if (pos == std::string::npos) return "";
134
0
        c = PolyMod(c, pos & 31); // Emit a symbol for the position inside the group, for every character.
135
0
        cls = cls * 3 + (pos >> 5); // Accumulate the group numbers
136
0
        if (++clscount == 3) {
137
            // Emit an extra symbol representing the group numbers, for every 3 characters.
138
0
            c = PolyMod(c, cls);
139
0
            cls = 0;
140
0
            clscount = 0;
141
0
        }
142
0
    }
143
0
    if (clscount > 0) c = PolyMod(c, cls);
144
0
    for (int j = 0; j < 8; ++j) c = PolyMod(c, 0); // Shift further to determine the checksum.
145
0
    c ^= 1; // Prevent appending zeroes from not affecting the checksum.
146
147
0
    std::string ret(8, ' ');
148
0
    for (int j = 0; j < 8; ++j) ret[j] = CHECKSUM_CHARSET[(c >> (5 * (7 - j))) & 31];
149
0
    return ret;
150
0
}
151
152
0
std::string AddChecksum(const std::string& str) { return str + "#" + DescriptorChecksum(str); }
153
154
////////////////////////////////////////////////////////////////////////////
155
// Internal representation                                                //
156
////////////////////////////////////////////////////////////////////////////
157
158
typedef std::vector<uint32_t> KeyPath;
159
160
/** Interface for public key objects in descriptors. */
161
struct PubkeyProvider
162
{
163
protected:
164
    //! Index of this key expression in the descriptor
165
    //! E.g. If this PubkeyProvider is key1 in multi(2, key1, key2, key3), then m_expr_index = 0
166
    uint32_t m_expr_index;
167
168
public:
169
0
    explicit PubkeyProvider(uint32_t exp_index) : m_expr_index(exp_index) {}
170
171
0
    virtual ~PubkeyProvider() = default;
172
173
    /** Compare two public keys represented by this provider.
174
     * Used by the Miniscript descriptors to check for duplicate keys in the script.
175
     */
176
0
    bool operator<(PubkeyProvider& other) const {
177
0
        FlatSigningProvider dummy;
178
179
0
        std::optional<CPubKey> a = GetPubKey(0, dummy, dummy);
180
0
        std::optional<CPubKey> b = other.GetPubKey(0, dummy, dummy);
181
182
0
        return a < b;
183
0
    }
184
185
    /** Derive a public key and put it into out.
186
     *  read_cache is the cache to read keys from (if not nullptr)
187
     *  write_cache is the cache to write keys to (if not nullptr)
188
     *  Caches are not exclusive but this is not tested. Currently we use them exclusively
189
     */
190
    virtual std::optional<CPubKey> GetPubKey(int pos, const SigningProvider& arg, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const = 0;
191
192
    /** Whether this represent multiple public keys at different positions. */
193
    virtual bool IsRange() const = 0;
194
195
    /** Get the size of the generated public key(s) in bytes (33 or 65). */
196
    virtual size_t GetSize() const = 0;
197
198
    enum class StringType {
199
        PUBLIC,
200
        COMPAT // string calculation that mustn't change over time to stay compatible with previous software versions
201
    };
202
203
    /** Get the descriptor string form. */
204
    virtual std::string ToString(StringType type=StringType::PUBLIC) const = 0;
205
206
    /** Get the descriptor string form including private data (if available in arg). */
207
    virtual bool ToPrivateString(const SigningProvider& arg, std::string& out) const = 0;
208
209
    /** Get the descriptor string form with the xpub at the last hardened derivation,
210
     *  and always use h for hardened derivation.
211
     */
212
    virtual bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache = nullptr) const = 0;
213
214
    /** Derive a private key, if private data is available in arg and put it into out. */
215
    virtual void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const = 0;
216
217
    /** Return the non-extended public key for this PubkeyProvider, if it has one. */
218
    virtual std::optional<CPubKey> GetRootPubKey() const = 0;
219
    /** Return the extended public key for this PubkeyProvider, if it has one. */
220
    virtual std::optional<CExtPubKey> GetRootExtPubKey() const = 0;
221
222
    /** Make a deep copy of this PubkeyProvider */
223
    virtual std::unique_ptr<PubkeyProvider> Clone() const = 0;
224
};
225
226
class OriginPubkeyProvider final : public PubkeyProvider
227
{
228
    KeyOriginInfo m_origin;
229
    std::unique_ptr<PubkeyProvider> m_provider;
230
    bool m_apostrophe;
231
232
    std::string OriginString(StringType type, bool normalized=false) const
233
0
    {
234
        // If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions
235
0
        bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT;
236
0
        return HexStr(m_origin.fingerprint) + FormatHDKeypath(m_origin.path, use_apostrophe);
237
0
    }
238
239
public:
240
0
    OriginPubkeyProvider(uint32_t exp_index, KeyOriginInfo info, std::unique_ptr<PubkeyProvider> provider, bool apostrophe) : PubkeyProvider(exp_index), m_origin(std::move(info)), m_provider(std::move(provider)), m_apostrophe(apostrophe) {}
241
    std::optional<CPubKey> GetPubKey(int pos, const SigningProvider& arg, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
242
0
    {
243
0
        std::optional<CPubKey> pub = m_provider->GetPubKey(pos, arg, out, read_cache, write_cache);
244
0
        if (!pub) return std::nullopt;
245
0
        Assert(out.pubkeys.contains(pub->GetID()));
Line
Count
Source
106
0
#define Assert(val) inline_assertion_check<true>(val, __FILE__, __LINE__, __func__, #val)
246
0
        auto& [pubkey, suborigin] = out.origins[pub->GetID()];
247
0
        Assert(pubkey == *pub); // m_provider must have a valid origin by this point.
Line
Count
Source
106
0
#define Assert(val) inline_assertion_check<true>(val, __FILE__, __LINE__, __func__, #val)
248
0
        std::copy(std::begin(m_origin.fingerprint), std::end(m_origin.fingerprint), suborigin.fingerprint);
249
0
        suborigin.path.insert(suborigin.path.begin(), m_origin.path.begin(), m_origin.path.end());
250
0
        return pub;
251
0
    }
252
0
    bool IsRange() const override { return m_provider->IsRange(); }
253
0
    size_t GetSize() const override { return m_provider->GetSize(); }
254
0
    std::string ToString(StringType type) const override { return "[" + OriginString(type) + "]" + m_provider->ToString(type); }
255
    bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
256
0
    {
257
0
        std::string sub;
258
0
        if (!m_provider->ToPrivateString(arg, sub)) return false;
259
0
        ret = "[" + OriginString(StringType::PUBLIC) + "]" + std::move(sub);
260
0
        return true;
261
0
    }
262
    bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override
263
0
    {
264
0
        std::string sub;
265
0
        if (!m_provider->ToNormalizedString(arg, sub, cache)) return false;
266
        // If m_provider is a BIP32PubkeyProvider, we may get a string formatted like a OriginPubkeyProvider
267
        // In that case, we need to strip out the leading square bracket and fingerprint from the substring,
268
        // and append that to our own origin string.
269
0
        if (sub[0] == '[') {
270
0
            sub = sub.substr(9);
271
0
            ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + std::move(sub);
272
0
        } else {
273
0
            ret = "[" + OriginString(StringType::PUBLIC, /*normalized=*/true) + "]" + std::move(sub);
274
0
        }
275
0
        return true;
276
0
    }
277
    void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const override
278
0
    {
279
0
        m_provider->GetPrivKey(pos, arg, out);
280
0
    }
281
    std::optional<CPubKey> GetRootPubKey() const override
282
0
    {
283
0
        return m_provider->GetRootPubKey();
284
0
    }
285
    std::optional<CExtPubKey> GetRootExtPubKey() const override
286
0
    {
287
0
        return m_provider->GetRootExtPubKey();
288
0
    }
289
    std::unique_ptr<PubkeyProvider> Clone() const override
290
0
    {
291
0
        return std::make_unique<OriginPubkeyProvider>(m_expr_index, m_origin, m_provider->Clone(), m_apostrophe);
292
0
    }
293
};
294
295
/** An object representing a parsed constant public key in a descriptor. */
296
class ConstPubkeyProvider final : public PubkeyProvider
297
{
298
    CPubKey m_pubkey;
299
    bool m_xonly;
300
301
    std::optional<CKey> GetPrivKey(const SigningProvider& arg) const
302
0
    {
303
0
        CKey key;
304
0
        if (!(m_xonly ? arg.GetKeyByXOnly(XOnlyPubKey(m_pubkey), key) :
305
0
                        arg.GetKey(m_pubkey.GetID(), key))) return std::nullopt;
306
0
        return key;
307
0
    }
308
309
public:
310
0
    ConstPubkeyProvider(uint32_t exp_index, const CPubKey& pubkey, bool xonly) : PubkeyProvider(exp_index), m_pubkey(pubkey), m_xonly(xonly) {}
311
    std::optional<CPubKey> GetPubKey(int pos, const SigningProvider&, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
312
0
    {
313
0
        KeyOriginInfo info;
314
0
        CKeyID keyid = m_pubkey.GetID();
315
0
        std::copy(keyid.begin(), keyid.begin() + sizeof(info.fingerprint), info.fingerprint);
316
0
        out.origins.emplace(keyid, std::make_pair(m_pubkey, info));
317
0
        out.pubkeys.emplace(keyid, m_pubkey);
318
0
        return m_pubkey;
319
0
    }
320
0
    bool IsRange() const override { return false; }
321
0
    size_t GetSize() const override { return m_pubkey.size(); }
322
0
    std::string ToString(StringType type) const override { return m_xonly ? HexStr(m_pubkey).substr(2) : HexStr(m_pubkey); }
323
    bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
324
0
    {
325
0
        std::optional<CKey> key = GetPrivKey(arg);
326
0
        if (!key) return false;
327
0
        ret = EncodeSecret(*key);
328
0
        return true;
329
0
    }
330
    bool ToNormalizedString(const SigningProvider& arg, std::string& ret, const DescriptorCache* cache) const override
331
0
    {
332
0
        ret = ToString(StringType::PUBLIC);
333
0
        return true;
334
0
    }
335
    void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const override
336
0
    {
337
0
        std::optional<CKey> key = GetPrivKey(arg);
338
0
        if (!key) return;
339
0
        out.keys.emplace(key->GetPubKey().GetID(), *key);
340
0
    }
341
    std::optional<CPubKey> GetRootPubKey() const override
342
0
    {
343
0
        return m_pubkey;
344
0
    }
345
    std::optional<CExtPubKey> GetRootExtPubKey() const override
346
0
    {
347
0
        return std::nullopt;
348
0
    }
349
    std::unique_ptr<PubkeyProvider> Clone() const override
350
0
    {
351
0
        return std::make_unique<ConstPubkeyProvider>(m_expr_index, m_pubkey, m_xonly);
352
0
    }
353
};
354
355
enum class DeriveType {
356
    NO,
357
    UNHARDENED,
358
    HARDENED,
359
};
360
361
/** An object representing a parsed extended public key in a descriptor. */
362
class BIP32PubkeyProvider final : public PubkeyProvider
363
{
364
    // Root xpub, path, and final derivation step type being used, if any
365
    CExtPubKey m_root_extkey;
366
    KeyPath m_path;
367
    DeriveType m_derive;
368
    // Whether ' or h is used in harded derivation
369
    bool m_apostrophe;
370
371
    bool GetExtKey(const SigningProvider& arg, CExtKey& ret) const
372
0
    {
373
0
        CKey key;
374
0
        if (!arg.GetKey(m_root_extkey.pubkey.GetID(), key)) return false;
375
0
        ret.nDepth = m_root_extkey.nDepth;
376
0
        std::copy(m_root_extkey.vchFingerprint, m_root_extkey.vchFingerprint + sizeof(ret.vchFingerprint), ret.vchFingerprint);
377
0
        ret.nChild = m_root_extkey.nChild;
378
0
        ret.chaincode = m_root_extkey.chaincode;
379
0
        ret.key = key;
380
0
        return true;
381
0
    }
382
383
    // Derives the last xprv
384
    bool GetDerivedExtKey(const SigningProvider& arg, CExtKey& xprv, CExtKey& last_hardened) const
385
0
    {
386
0
        if (!GetExtKey(arg, xprv)) return false;
387
0
        for (auto entry : m_path) {
388
0
            if (!xprv.Derive(xprv, entry)) return false;
389
0
            if (entry >> 31) {
390
0
                last_hardened = xprv;
391
0
            }
392
0
        }
393
0
        return true;
394
0
    }
395
396
    bool IsHardened() const
397
0
    {
398
0
        if (m_derive == DeriveType::HARDENED) return true;
399
0
        for (auto entry : m_path) {
400
0
            if (entry >> 31) return true;
401
0
        }
402
0
        return false;
403
0
    }
404
405
public:
406
0
    BIP32PubkeyProvider(uint32_t exp_index, const CExtPubKey& extkey, KeyPath path, DeriveType derive, bool apostrophe) : PubkeyProvider(exp_index), m_root_extkey(extkey), m_path(std::move(path)), m_derive(derive), m_apostrophe(apostrophe) {}
407
0
    bool IsRange() const override { return m_derive != DeriveType::NO; }
408
0
    size_t GetSize() const override { return 33; }
409
    std::optional<CPubKey> GetPubKey(int pos, const SigningProvider& arg, FlatSigningProvider& out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) const override
410
0
    {
411
0
        KeyOriginInfo info;
412
0
        CKeyID keyid = m_root_extkey.pubkey.GetID();
413
0
        std::copy(keyid.begin(), keyid.begin() + sizeof(info.fingerprint), info.fingerprint);
414
0
        info.path = m_path;
415
0
        if (m_derive == DeriveType::UNHARDENED) info.path.push_back((uint32_t)pos);
416
0
        if (m_derive == DeriveType::HARDENED) info.path.push_back(((uint32_t)pos) | 0x80000000L);
417
418
        // Derive keys or fetch them from cache
419
0
        CExtPubKey final_extkey = m_root_extkey;
420
0
        CExtPubKey parent_extkey = m_root_extkey;
421
0
        CExtPubKey last_hardened_extkey;
422
0
        bool der = true;
423
0
        if (read_cache) {
424
0
            if (!read_cache->GetCachedDerivedExtPubKey(m_expr_index, pos, final_extkey)) {
425
0
                if (m_derive == DeriveType::HARDENED) return std::nullopt;
426
                // Try to get the derivation parent
427
0
                if (!read_cache->GetCachedParentExtPubKey(m_expr_index, parent_extkey)) return std::nullopt;
428
0
                final_extkey = parent_extkey;
429
0
                if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
430
0
            }
431
0
        } else if (IsHardened()) {
432
0
            CExtKey xprv;
433
0
            CExtKey lh_xprv;
434
0
            if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return std::nullopt;
435
0
            parent_extkey = xprv.Neuter();
436
0
            if (m_derive == DeriveType::UNHARDENED) der = xprv.Derive(xprv, pos);
437
0
            if (m_derive == DeriveType::HARDENED) der = xprv.Derive(xprv, pos | 0x80000000UL);
438
0
            final_extkey = xprv.Neuter();
439
0
            if (lh_xprv.key.IsValid()) {
440
0
                last_hardened_extkey = lh_xprv.Neuter();
441
0
            }
442
0
        } else {
443
0
            for (auto entry : m_path) {
444
0
                if (!parent_extkey.Derive(parent_extkey, entry)) return std::nullopt;
445
0
            }
446
0
            final_extkey = parent_extkey;
447
0
            if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
448
0
            assert(m_derive != DeriveType::HARDENED);
449
0
        }
450
0
        if (!der) return std::nullopt;
451
452
0
        out.origins.emplace(final_extkey.pubkey.GetID(), std::make_pair(final_extkey.pubkey, info));
453
0
        out.pubkeys.emplace(final_extkey.pubkey.GetID(), final_extkey.pubkey);
454
455
0
        if (write_cache) {
456
            // Only cache parent if there is any unhardened derivation
457
0
            if (m_derive != DeriveType::HARDENED) {
458
0
                write_cache->CacheParentExtPubKey(m_expr_index, parent_extkey);
459
                // Cache last hardened xpub if we have it
460
0
                if (last_hardened_extkey.pubkey.IsValid()) {
461
0
                    write_cache->CacheLastHardenedExtPubKey(m_expr_index, last_hardened_extkey);
462
0
                }
463
0
            } else if (info.path.size() > 0) {
464
0
                write_cache->CacheDerivedExtPubKey(m_expr_index, pos, final_extkey);
465
0
            }
466
0
        }
467
468
0
        return final_extkey.pubkey;
469
0
    }
470
    std::string ToString(StringType type, bool normalized) const
471
0
    {
472
        // If StringType==COMPAT, always use the apostrophe to stay compatible with previous versions
473
0
        const bool use_apostrophe = (!normalized && m_apostrophe) || type == StringType::COMPAT;
474
0
        std::string ret = EncodeExtPubKey(m_root_extkey) + FormatHDKeypath(m_path, /*apostrophe=*/use_apostrophe);
475
0
        if (IsRange()) {
476
0
            ret += "/*";
477
0
            if (m_derive == DeriveType::HARDENED) ret += use_apostrophe ? '\'' : 'h';
478
0
        }
479
0
        return ret;
480
0
    }
481
    std::string ToString(StringType type=StringType::PUBLIC) const override
482
0
    {
483
0
        return ToString(type, /*normalized=*/false);
484
0
    }
485
    bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
486
0
    {
487
0
        CExtKey key;
488
0
        if (!GetExtKey(arg, key)) return false;
489
0
        out = EncodeExtKey(key) + FormatHDKeypath(m_path, /*apostrophe=*/m_apostrophe);
490
0
        if (IsRange()) {
491
0
            out += "/*";
492
0
            if (m_derive == DeriveType::HARDENED) out += m_apostrophe ? '\'' : 'h';
493
0
        }
494
0
        return true;
495
0
    }
496
    bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override
497
0
    {
498
0
        if (m_derive == DeriveType::HARDENED) {
499
0
            out = ToString(StringType::PUBLIC, /*normalized=*/true);
500
501
0
            return true;
502
0
        }
503
        // Step backwards to find the last hardened step in the path
504
0
        int i = (int)m_path.size() - 1;
505
0
        for (; i >= 0; --i) {
506
0
            if (m_path.at(i) >> 31) {
507
0
                break;
508
0
            }
509
0
        }
510
        // Either no derivation or all unhardened derivation
511
0
        if (i == -1) {
512
0
            out = ToString();
513
0
            return true;
514
0
        }
515
        // Get the path to the last hardened stup
516
0
        KeyOriginInfo origin;
517
0
        int k = 0;
518
0
        for (; k <= i; ++k) {
519
            // Add to the path
520
0
            origin.path.push_back(m_path.at(k));
521
0
        }
522
        // Build the remaining path
523
0
        KeyPath end_path;
524
0
        for (; k < (int)m_path.size(); ++k) {
525
0
            end_path.push_back(m_path.at(k));
526
0
        }
527
        // Get the fingerprint
528
0
        CKeyID id = m_root_extkey.pubkey.GetID();
529
0
        std::copy(id.begin(), id.begin() + 4, origin.fingerprint);
530
531
0
        CExtPubKey xpub;
532
0
        CExtKey lh_xprv;
533
        // If we have the cache, just get the parent xpub
534
0
        if (cache != nullptr) {
535
0
            cache->GetCachedLastHardenedExtPubKey(m_expr_index, xpub);
536
0
        }
537
0
        if (!xpub.pubkey.IsValid()) {
538
            // Cache miss, or nor cache, or need privkey
539
0
            CExtKey xprv;
540
0
            if (!GetDerivedExtKey(arg, xprv, lh_xprv)) return false;
541
0
            xpub = lh_xprv.Neuter();
542
0
        }
543
0
        assert(xpub.pubkey.IsValid());
544
545
        // Build the string
546
0
        std::string origin_str = HexStr(origin.fingerprint) + FormatHDKeypath(origin.path);
547
0
        out = "[" + origin_str + "]" + EncodeExtPubKey(xpub) + FormatHDKeypath(end_path);
548
0
        if (IsRange()) {
549
0
            out += "/*";
550
0
            assert(m_derive == DeriveType::UNHARDENED);
551
0
        }
552
0
        return true;
553
0
    }
554
    void GetPrivKey(int pos, const SigningProvider& arg, FlatSigningProvider& out) const override
555
0
    {
556
0
        CExtKey extkey;
557
0
        CExtKey dummy;
558
0
        if (!GetDerivedExtKey(arg, extkey, dummy)) return;
559
0
        if (m_derive == DeriveType::UNHARDENED && !extkey.Derive(extkey, pos)) return;
560
0
        if (m_derive == DeriveType::HARDENED && !extkey.Derive(extkey, pos | 0x80000000UL)) return;
561
0
        out.keys.emplace(extkey.key.GetPubKey().GetID(), extkey.key);
562
0
    }
563
    std::optional<CPubKey> GetRootPubKey() const override
564
0
    {
565
0
        return std::nullopt;
566
0
    }
567
    std::optional<CExtPubKey> GetRootExtPubKey() const override
568
0
    {
569
0
        return m_root_extkey;
570
0
    }
571
    std::unique_ptr<PubkeyProvider> Clone() const override
572
0
    {
573
0
        return std::make_unique<BIP32PubkeyProvider>(m_expr_index, m_root_extkey, m_path, m_derive, m_apostrophe);
574
0
    }
575
};
576
577
/** Base class for all Descriptor implementations. */
578
class DescriptorImpl : public Descriptor
579
{
580
protected:
581
    //! Public key arguments for this descriptor (size 1 for PK, PKH, WPKH; any size for WSH and Multisig).
582
    const std::vector<std::unique_ptr<PubkeyProvider>> m_pubkey_args;
583
    //! The string name of the descriptor function.
584
    const std::string m_name;
585
586
    //! The sub-descriptor arguments (empty for everything but SH and WSH).
587
    //! In doc/descriptors.m this is referred to as SCRIPT expressions sh(SCRIPT)
588
    //! and wsh(SCRIPT), and distinct from KEY expressions and ADDR expressions.
589
    //! Subdescriptors can only ever generate a single script.
590
    const std::vector<std::unique_ptr<DescriptorImpl>> m_subdescriptor_args;
591
592
    //! Return a serialization of anything except pubkey and script arguments, to be prepended to those.
593
0
    virtual std::string ToStringExtra() const { return ""; }
594
595
    /** A helper function to construct the scripts for this descriptor.
596
     *
597
     *  This function is invoked once by ExpandHelper.
598
     *
599
     *  @param pubkeys The evaluations of the m_pubkey_args field.
600
     *  @param scripts The evaluations of m_subdescriptor_args (one for each m_subdescriptor_args element).
601
     *  @param out A FlatSigningProvider to put scripts or public keys in that are necessary to the solver.
602
     *             The origin info of the provided pubkeys is automatically added.
603
     *  @return A vector with scriptPubKeys for this descriptor.
604
     */
605
    virtual std::vector<CScript> MakeScripts(const std::vector<CPubKey>& pubkeys, std::span<const CScript> scripts, FlatSigningProvider& out) const = 0;
606
607
public:
608
0
    DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args() {}
609
0
    DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::unique_ptr<DescriptorImpl> script, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(Vector(std::move(script))) {}
610
0
    DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::vector<std::unique_ptr<DescriptorImpl>> scripts, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_args(std::move(scripts)) {}
611
612
    enum class StringType
613
    {
614
        PUBLIC,
615
        PRIVATE,
616
        NORMALIZED,
617
        COMPAT, // string calculation that mustn't change over time to stay compatible with previous software versions
618
    };
619
620
    // NOLINTNEXTLINE(misc-no-recursion)
621
    bool IsSolvable() const override
622
0
    {
623
0
        for (const auto& arg : m_subdescriptor_args) {
624
0
            if (!arg->IsSolvable()) return false;
625
0
        }
626
0
        return true;
627
0
    }
628
629
    // NOLINTNEXTLINE(misc-no-recursion)
630
    bool IsRange() const final
631
0
    {
632
0
        for (const auto& pubkey : m_pubkey_args) {
633
0
            if (pubkey->IsRange()) return true;
634
0
        }
635
0
        for (const auto& arg : m_subdescriptor_args) {
636
0
            if (arg->IsRange()) return true;
637
0
        }
638
0
        return false;
639
0
    }
640
641
    // NOLINTNEXTLINE(misc-no-recursion)
642
    virtual bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const
643
0
    {
644
0
        size_t pos = 0;
645
0
        for (const auto& scriptarg : m_subdescriptor_args) {
646
0
            if (pos++) ret += ",";
647
0
            std::string tmp;
648
0
            if (!scriptarg->ToStringHelper(arg, tmp, type, cache)) return false;
649
0
            ret += tmp;
650
0
        }
651
0
        return true;
652
0
    }
653
654
    // NOLINTNEXTLINE(misc-no-recursion)
655
    virtual bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type, const DescriptorCache* cache = nullptr) const
656
0
    {
657
0
        std::string extra = ToStringExtra();
658
0
        size_t pos = extra.size() > 0 ? 1 : 0;
659
0
        std::string ret = m_name + "(" + extra;
660
0
        for (const auto& pubkey : m_pubkey_args) {
661
0
            if (pos++) ret += ",";
662
0
            std::string tmp;
663
0
            switch (type) {
664
0
                case StringType::NORMALIZED:
665
0
                    if (!pubkey->ToNormalizedString(*arg, tmp, cache)) return false;
666
0
                    break;
667
0
                case StringType::PRIVATE:
668
0
                    if (!pubkey->ToPrivateString(*arg, tmp)) return false;
669
0
                    break;
670
0
                case StringType::PUBLIC:
671
0
                    tmp = pubkey->ToString();
672
0
                    break;
673
0
                case StringType::COMPAT:
674
0
                    tmp = pubkey->ToString(PubkeyProvider::StringType::COMPAT);
675
0
                    break;
676
0
            }
677
0
            ret += tmp;
678
0
        }
679
0
        std::string subscript;
680
0
        if (!ToStringSubScriptHelper(arg, subscript, type, cache)) return false;
681
0
        if (pos && subscript.size()) ret += ',';
682
0
        out = std::move(ret) + std::move(subscript) + ")";
683
0
        return true;
684
0
    }
685
686
    std::string ToString(bool compat_format) const final
687
0
    {
688
0
        std::string ret;
689
0
        ToStringHelper(nullptr, ret, compat_format ? StringType::COMPAT : StringType::PUBLIC);
690
0
        return AddChecksum(ret);
691
0
    }
692
693
    bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
694
0
    {
695
0
        bool ret = ToStringHelper(&arg, out, StringType::PRIVATE);
696
0
        out = AddChecksum(out);
697
0
        return ret;
698
0
    }
699
700
    bool ToNormalizedString(const SigningProvider& arg, std::string& out, const DescriptorCache* cache) const override final
701
0
    {
702
0
        bool ret = ToStringHelper(&arg, out, StringType::NORMALIZED, cache);
703
0
        out = AddChecksum(out);
704
0
        return ret;
705
0
    }
706
707
    // NOLINTNEXTLINE(misc-no-recursion)
708
    bool ExpandHelper(int pos, const SigningProvider& arg, const DescriptorCache* read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache) const
709
0
    {
710
0
        FlatSigningProvider subprovider;
711
0
        std::vector<CPubKey> pubkeys;
712
0
        pubkeys.reserve(m_pubkey_args.size());
713
714
        // Construct temporary data in `pubkeys`, `subscripts`, and `subprovider` to avoid producing output in case of failure.
715
0
        for (const auto& p : m_pubkey_args) {
716
0
            std::optional<CPubKey> pubkey = p->GetPubKey(pos, arg, subprovider, read_cache, write_cache);
717
0
            if (!pubkey) return false;
718
0
            pubkeys.push_back(pubkey.value());
719
0
        }
720
0
        std::vector<CScript> subscripts;
721
0
        for (const auto& subarg : m_subdescriptor_args) {
722
0
            std::vector<CScript> outscripts;
723
0
            if (!subarg->ExpandHelper(pos, arg, read_cache, outscripts, subprovider, write_cache)) return false;
724
0
            assert(outscripts.size() == 1);
725
0
            subscripts.emplace_back(std::move(outscripts[0]));
726
0
        }
727
0
        out.Merge(std::move(subprovider));
728
729
0
        output_scripts = MakeScripts(pubkeys, std::span{subscripts}, out);
730
0
        return true;
731
0
    }
732
733
    bool Expand(int pos, const SigningProvider& provider, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache = nullptr) const final
734
0
    {
735
0
        return ExpandHelper(pos, provider, nullptr, output_scripts, out, write_cache);
736
0
    }
737
738
    bool ExpandFromCache(int pos, const DescriptorCache& read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out) const final
739
0
    {
740
0
        return ExpandHelper(pos, DUMMY_SIGNING_PROVIDER, &read_cache, output_scripts, out, nullptr);
741
0
    }
742
743
    // NOLINTNEXTLINE(misc-no-recursion)
744
    void ExpandPrivate(int pos, const SigningProvider& provider, FlatSigningProvider& out) const final
745
0
    {
746
0
        for (const auto& p : m_pubkey_args) {
747
0
            p->GetPrivKey(pos, provider, out);
748
0
        }
749
0
        for (const auto& arg : m_subdescriptor_args) {
750
0
            arg->ExpandPrivate(pos, provider, out);
751
0
        }
752
0
    }
753
754
0
    std::optional<OutputType> GetOutputType() const override { return std::nullopt; }
755
756
0
    std::optional<int64_t> ScriptSize() const override { return {}; }
757
758
    /** A helper for MaxSatisfactionWeight.
759
     *
760
     * @param use_max_sig Whether to assume ECDSA signatures will have a high-r.
761
     * @return The maximum size of the satisfaction in raw bytes (with no witness meaning).
762
     */
763
0
    virtual std::optional<int64_t> MaxSatSize(bool use_max_sig) const { return {}; }
764
765
0
    std::optional<int64_t> MaxSatisfactionWeight(bool) const override { return {}; }
766
767
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return {}; }
768
769
    // NOLINTNEXTLINE(misc-no-recursion)
770
    void GetPubKeys(std::set<CPubKey>& pubkeys, std::set<CExtPubKey>& ext_pubs) const override
771
0
    {
772
0
        for (const auto& p : m_pubkey_args) {
773
0
            std::optional<CPubKey> pub = p->GetRootPubKey();
774
0
            if (pub) pubkeys.insert(*pub);
775
0
            std::optional<CExtPubKey> ext_pub = p->GetRootExtPubKey();
776
0
            if (ext_pub) ext_pubs.insert(*ext_pub);
777
0
        }
778
0
        for (const auto& arg : m_subdescriptor_args) {
779
0
            arg->GetPubKeys(pubkeys, ext_pubs);
780
0
        }
781
0
    }
782
783
    virtual std::unique_ptr<DescriptorImpl> Clone() const = 0;
784
};
785
786
/** A parsed addr(A) descriptor. */
787
class AddressDescriptor final : public DescriptorImpl
788
{
789
    const CTxDestination m_destination;
790
protected:
791
0
    std::string ToStringExtra() const override { return EncodeDestination(m_destination); }
792
0
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript>, FlatSigningProvider&) const override { return Vector(GetScriptForDestination(m_destination)); }
793
public:
794
0
    AddressDescriptor(CTxDestination destination) : DescriptorImpl({}, "addr"), m_destination(std::move(destination)) {}
795
0
    bool IsSolvable() const final { return false; }
796
797
    std::optional<OutputType> GetOutputType() const override
798
0
    {
799
0
        return OutputTypeFromDestination(m_destination);
800
0
    }
801
0
    bool IsSingleType() const final { return true; }
802
0
    bool IsSingleKey() const final { return false; }
803
0
    bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; }
804
805
0
    std::optional<int64_t> ScriptSize() const override { return GetScriptForDestination(m_destination).size(); }
806
    std::unique_ptr<DescriptorImpl> Clone() const override
807
0
    {
808
0
        return std::make_unique<AddressDescriptor>(m_destination);
809
0
    }
810
};
811
812
/** A parsed raw(H) descriptor. */
813
class RawDescriptor final : public DescriptorImpl
814
{
815
    const CScript m_script;
816
protected:
817
0
    std::string ToStringExtra() const override { return HexStr(m_script); }
818
0
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript>, FlatSigningProvider&) const override { return Vector(m_script); }
819
public:
820
0
    RawDescriptor(CScript script) : DescriptorImpl({}, "raw"), m_script(std::move(script)) {}
821
0
    bool IsSolvable() const final { return false; }
822
823
    std::optional<OutputType> GetOutputType() const override
824
0
    {
825
0
        CTxDestination dest;
826
0
        ExtractDestination(m_script, dest);
827
0
        return OutputTypeFromDestination(dest);
828
0
    }
829
0
    bool IsSingleType() const final { return true; }
830
0
    bool IsSingleKey() const final { return false; }
831
0
    bool ToPrivateString(const SigningProvider& arg, std::string& out) const final { return false; }
832
833
0
    std::optional<int64_t> ScriptSize() const override { return m_script.size(); }
834
835
    std::unique_ptr<DescriptorImpl> Clone() const override
836
0
    {
837
0
        return std::make_unique<RawDescriptor>(m_script);
838
0
    }
839
};
840
841
/** A parsed pk(P) descriptor. */
842
class PKDescriptor final : public DescriptorImpl
843
{
844
private:
845
    const bool m_xonly;
846
protected:
847
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override
848
0
    {
849
0
        if (m_xonly) {
850
0
            CScript script = CScript() << ToByteVector(XOnlyPubKey(keys[0])) << OP_CHECKSIG;
851
0
            return Vector(std::move(script));
852
0
        } else {
853
0
            return Vector(GetScriptForRawPubKey(keys[0]));
854
0
        }
855
0
    }
856
public:
857
0
    PKDescriptor(std::unique_ptr<PubkeyProvider> prov, bool xonly = false) : DescriptorImpl(Vector(std::move(prov)), "pk"), m_xonly(xonly) {}
858
0
    bool IsSingleType() const final { return true; }
859
0
    bool IsSingleKey() const final { return true; }
860
861
0
    std::optional<int64_t> ScriptSize() const override {
862
0
        return 1 + (m_xonly ? 32 : m_pubkey_args[0]->GetSize()) + 1;
863
0
    }
864
865
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
866
0
        const auto ecdsa_sig_size = use_max_sig ? 72 : 71;
867
0
        return 1 + (m_xonly ? 65 : ecdsa_sig_size);
868
0
    }
869
870
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
871
0
        return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
872
0
    }
873
874
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return 1; }
875
876
    std::unique_ptr<DescriptorImpl> Clone() const override
877
0
    {
878
0
        return std::make_unique<PKDescriptor>(m_pubkey_args.at(0)->Clone(), m_xonly);
879
0
    }
880
};
881
882
/** A parsed pkh(P) descriptor. */
883
class PKHDescriptor final : public DescriptorImpl
884
{
885
protected:
886
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override
887
0
    {
888
0
        CKeyID id = keys[0].GetID();
889
0
        return Vector(GetScriptForDestination(PKHash(id)));
890
0
    }
891
public:
892
0
    PKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "pkh") {}
893
0
    std::optional<OutputType> GetOutputType() const override { return OutputType::LEGACY; }
894
0
    bool IsSingleType() const final { return true; }
895
0
    bool IsSingleKey() const final { return true; }
896
897
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 1 + 20 + 1 + 1; }
898
899
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
900
0
        const auto sig_size = use_max_sig ? 72 : 71;
901
0
        return 1 + sig_size + 1 + m_pubkey_args[0]->GetSize();
902
0
    }
903
904
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
905
0
        return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
906
0
    }
907
908
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return 2; }
909
910
    std::unique_ptr<DescriptorImpl> Clone() const override
911
0
    {
912
0
        return std::make_unique<PKHDescriptor>(m_pubkey_args.at(0)->Clone());
913
0
    }
914
};
915
916
/** A parsed wpkh(P) descriptor. */
917
class WPKHDescriptor final : public DescriptorImpl
918
{
919
protected:
920
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override
921
0
    {
922
0
        CKeyID id = keys[0].GetID();
923
0
        return Vector(GetScriptForDestination(WitnessV0KeyHash(id)));
924
0
    }
925
public:
926
0
    WPKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "wpkh") {}
927
0
    std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
928
0
    bool IsSingleType() const final { return true; }
929
0
    bool IsSingleKey() const final { return true; }
930
931
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20; }
932
933
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
934
0
        const auto sig_size = use_max_sig ? 72 : 71;
935
0
        return (1 + sig_size + 1 + 33);
936
0
    }
937
938
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
939
0
        return MaxSatSize(use_max_sig);
940
0
    }
941
942
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return 2; }
943
944
    std::unique_ptr<DescriptorImpl> Clone() const override
945
0
    {
946
0
        return std::make_unique<WPKHDescriptor>(m_pubkey_args.at(0)->Clone());
947
0
    }
948
};
949
950
/** A parsed combo(P) descriptor. */
951
class ComboDescriptor final : public DescriptorImpl
952
{
953
protected:
954
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider& out) const override
955
0
    {
956
0
        std::vector<CScript> ret;
957
0
        CKeyID id = keys[0].GetID();
958
0
        ret.emplace_back(GetScriptForRawPubKey(keys[0])); // P2PK
959
0
        ret.emplace_back(GetScriptForDestination(PKHash(id))); // P2PKH
960
0
        if (keys[0].IsCompressed()) {
961
0
            CScript p2wpkh = GetScriptForDestination(WitnessV0KeyHash(id));
962
0
            out.scripts.emplace(CScriptID(p2wpkh), p2wpkh);
963
0
            ret.emplace_back(p2wpkh);
964
0
            ret.emplace_back(GetScriptForDestination(ScriptHash(p2wpkh))); // P2SH-P2WPKH
965
0
        }
966
0
        return ret;
967
0
    }
968
public:
969
0
    ComboDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), "combo") {}
970
0
    bool IsSingleType() const final { return false; }
971
0
    bool IsSingleKey() const final { return true; }
972
    std::unique_ptr<DescriptorImpl> Clone() const override
973
0
    {
974
0
        return std::make_unique<ComboDescriptor>(m_pubkey_args.at(0)->Clone());
975
0
    }
976
};
977
978
/** A parsed multi(...) or sortedmulti(...) descriptor */
979
class MultisigDescriptor final : public DescriptorImpl
980
{
981
    const int m_threshold;
982
    const bool m_sorted;
983
protected:
984
0
    std::string ToStringExtra() const override { return strprintf("%i", m_threshold); }
Line
Count
Source
1172
0
#define strprintf tfm::format
985
0
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override {
986
0
        if (m_sorted) {
987
0
            std::vector<CPubKey> sorted_keys(keys);
988
0
            std::sort(sorted_keys.begin(), sorted_keys.end());
989
0
            return Vector(GetScriptForMultisig(m_threshold, sorted_keys));
990
0
        }
991
0
        return Vector(GetScriptForMultisig(m_threshold, keys));
992
0
    }
993
public:
994
0
    MultisigDescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti" : "multi"), m_threshold(threshold), m_sorted(sorted) {}
995
0
    bool IsSingleType() const final { return true; }
996
0
    bool IsSingleKey() const final { return false; }
997
998
0
    std::optional<int64_t> ScriptSize() const override {
999
0
        const auto n_keys = m_pubkey_args.size();
1000
0
        auto op = [](int64_t acc, const std::unique_ptr<PubkeyProvider>& pk) { return acc + 1 + pk->GetSize();};
1001
0
        const auto pubkeys_size{std::accumulate(m_pubkey_args.begin(), m_pubkey_args.end(), int64_t{0}, op)};
1002
0
        return 1 + BuildScript(n_keys).size() + BuildScript(m_threshold).size() + pubkeys_size;
1003
0
    }
1004
1005
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1006
0
        const auto sig_size = use_max_sig ? 72 : 71;
1007
0
        return (1 + (1 + sig_size) * m_threshold);
1008
0
    }
1009
1010
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1011
0
        return *MaxSatSize(use_max_sig) * WITNESS_SCALE_FACTOR;
1012
0
    }
1013
1014
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return 1 + m_threshold; }
1015
1016
    std::unique_ptr<DescriptorImpl> Clone() const override
1017
0
    {
1018
0
        std::vector<std::unique_ptr<PubkeyProvider>> providers;
1019
0
        providers.reserve(m_pubkey_args.size());
1020
0
        std::transform(m_pubkey_args.begin(), m_pubkey_args.end(), providers.begin(), [](const std::unique_ptr<PubkeyProvider>& p) { return p->Clone(); });
1021
0
        return std::make_unique<MultisigDescriptor>(m_threshold, std::move(providers), m_sorted);
1022
0
    }
1023
};
1024
1025
/** A parsed (sorted)multi_a(...) descriptor. Always uses x-only pubkeys. */
1026
class MultiADescriptor final : public DescriptorImpl
1027
{
1028
    const int m_threshold;
1029
    const bool m_sorted;
1030
protected:
1031
0
    std::string ToStringExtra() const override { return strprintf("%i", m_threshold); }
Line
Count
Source
1172
0
#define strprintf tfm::format
1032
0
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript>, FlatSigningProvider&) const override {
1033
0
        CScript ret;
1034
0
        std::vector<XOnlyPubKey> xkeys;
1035
0
        xkeys.reserve(keys.size());
1036
0
        for (const auto& key : keys) xkeys.emplace_back(key);
1037
0
        if (m_sorted) std::sort(xkeys.begin(), xkeys.end());
1038
0
        ret << ToByteVector(xkeys[0]) << OP_CHECKSIG;
1039
0
        for (size_t i = 1; i < keys.size(); ++i) {
1040
0
            ret << ToByteVector(xkeys[i]) << OP_CHECKSIGADD;
1041
0
        }
1042
0
        ret << m_threshold << OP_NUMEQUAL;
1043
0
        return Vector(std::move(ret));
1044
0
    }
1045
public:
1046
0
    MultiADescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), sorted ? "sortedmulti_a" : "multi_a"), m_threshold(threshold), m_sorted(sorted) {}
1047
0
    bool IsSingleType() const final { return true; }
1048
0
    bool IsSingleKey() const final { return false; }
1049
1050
0
    std::optional<int64_t> ScriptSize() const override {
1051
0
        const auto n_keys = m_pubkey_args.size();
1052
0
        return (1 + 32 + 1) * n_keys + BuildScript(m_threshold).size() + 1;
1053
0
    }
1054
1055
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1056
0
        return (1 + 65) * m_threshold + (m_pubkey_args.size() - m_threshold);
1057
0
    }
1058
1059
0
    std::optional<int64_t> MaxSatisfactionElems() const override { return m_pubkey_args.size(); }
1060
1061
    std::unique_ptr<DescriptorImpl> Clone() const override
1062
0
    {
1063
0
        std::vector<std::unique_ptr<PubkeyProvider>> providers;
1064
0
        providers.reserve(m_pubkey_args.size());
1065
0
        for (const auto& arg : m_pubkey_args) {
1066
0
            providers.push_back(arg->Clone());
1067
0
        }
1068
0
        return std::make_unique<MultiADescriptor>(m_threshold, std::move(providers), m_sorted);
1069
0
    }
1070
};
1071
1072
/** A parsed sh(...) descriptor. */
1073
class SHDescriptor final : public DescriptorImpl
1074
{
1075
protected:
1076
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1077
0
    {
1078
0
        auto ret = Vector(GetScriptForDestination(ScriptHash(scripts[0])));
1079
0
        if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]);
1080
0
        return ret;
1081
0
    }
1082
1083
0
    bool IsSegwit() const { return m_subdescriptor_args[0]->GetOutputType() == OutputType::BECH32; }
1084
1085
public:
1086
0
    SHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "sh") {}
1087
1088
    std::optional<OutputType> GetOutputType() const override
1089
0
    {
1090
0
        assert(m_subdescriptor_args.size() == 1);
1091
0
        if (IsSegwit()) return OutputType::P2SH_SEGWIT;
1092
0
        return OutputType::LEGACY;
1093
0
    }
1094
0
    bool IsSingleType() const final { return true; }
1095
0
    bool IsSingleKey() const final { return m_subdescriptor_args[0]->IsSingleKey(); }
1096
1097
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 20 + 1; }
1098
1099
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1100
0
        if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) {
1101
0
            if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) {
1102
                // The subscript is never witness data.
1103
0
                const auto subscript_weight = (1 + *subscript_size) * WITNESS_SCALE_FACTOR;
1104
                // The weight depends on whether the inner descriptor is satisfied using the witness stack.
1105
0
                if (IsSegwit()) return subscript_weight + *sat_size;
1106
0
                return subscript_weight + *sat_size * WITNESS_SCALE_FACTOR;
1107
0
            }
1108
0
        }
1109
0
        return {};
1110
0
    }
1111
1112
0
    std::optional<int64_t> MaxSatisfactionElems() const override {
1113
0
        if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems;
1114
0
        return {};
1115
0
    }
1116
1117
    std::unique_ptr<DescriptorImpl> Clone() const override
1118
0
    {
1119
0
        return std::make_unique<SHDescriptor>(m_subdescriptor_args.at(0)->Clone());
1120
0
    }
1121
};
1122
1123
/** A parsed wsh(...) descriptor. */
1124
class WSHDescriptor final : public DescriptorImpl
1125
{
1126
protected:
1127
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1128
0
    {
1129
0
        auto ret = Vector(GetScriptForDestination(WitnessV0ScriptHash(scripts[0])));
1130
0
        if (ret.size()) out.scripts.emplace(CScriptID(scripts[0]), scripts[0]);
1131
0
        return ret;
1132
0
    }
1133
public:
1134
0
    WSHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "wsh") {}
1135
0
    std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
1136
0
    bool IsSingleType() const final { return true; }
1137
0
    bool IsSingleKey() const final { return m_subdescriptor_args[0]->IsSingleKey(); }
1138
1139
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1140
1141
0
    std::optional<int64_t> MaxSatSize(bool use_max_sig) const override {
1142
0
        if (const auto sat_size = m_subdescriptor_args[0]->MaxSatSize(use_max_sig)) {
1143
0
            if (const auto subscript_size = m_subdescriptor_args[0]->ScriptSize()) {
1144
0
                return GetSizeOfCompactSize(*subscript_size) + *subscript_size + *sat_size;
1145
0
            }
1146
0
        }
1147
0
        return {};
1148
0
    }
1149
1150
0
    std::optional<int64_t> MaxSatisfactionWeight(bool use_max_sig) const override {
1151
0
        return MaxSatSize(use_max_sig);
1152
0
    }
1153
1154
0
    std::optional<int64_t> MaxSatisfactionElems() const override {
1155
0
        if (const auto sub_elems = m_subdescriptor_args[0]->MaxSatisfactionElems()) return 1 + *sub_elems;
1156
0
        return {};
1157
0
    }
1158
1159
    std::unique_ptr<DescriptorImpl> Clone() const override
1160
0
    {
1161
0
        return std::make_unique<WSHDescriptor>(m_subdescriptor_args.at(0)->Clone());
1162
0
    }
1163
};
1164
1165
/** A parsed tr(...) descriptor. */
1166
class TRDescriptor final : public DescriptorImpl
1167
{
1168
    std::vector<int> m_depths;
1169
protected:
1170
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1171
0
    {
1172
0
        TaprootBuilder builder;
1173
0
        assert(m_depths.size() == scripts.size());
1174
0
        for (size_t pos = 0; pos < m_depths.size(); ++pos) {
1175
0
            builder.Add(m_depths[pos], scripts[pos], TAPROOT_LEAF_TAPSCRIPT);
1176
0
        }
1177
0
        if (!builder.IsComplete()) return {};
1178
0
        assert(keys.size() == 1);
1179
0
        XOnlyPubKey xpk(keys[0]);
1180
0
        if (!xpk.IsFullyValid()) return {};
1181
0
        builder.Finalize(xpk);
1182
0
        WitnessV1Taproot output = builder.GetOutput();
1183
0
        out.tr_trees[output] = builder;
1184
0
        return Vector(GetScriptForDestination(output));
1185
0
    }
1186
    bool ToStringSubScriptHelper(const SigningProvider* arg, std::string& ret, const StringType type, const DescriptorCache* cache = nullptr) const override
1187
0
    {
1188
0
        if (m_depths.empty()) return true;
1189
0
        std::vector<bool> path;
1190
0
        for (size_t pos = 0; pos < m_depths.size(); ++pos) {
1191
0
            if (pos) ret += ',';
1192
0
            while ((int)path.size() <= m_depths[pos]) {
1193
0
                if (path.size()) ret += '{';
1194
0
                path.push_back(false);
1195
0
            }
1196
0
            std::string tmp;
1197
0
            if (!m_subdescriptor_args[pos]->ToStringHelper(arg, tmp, type, cache)) return false;
1198
0
            ret += tmp;
1199
0
            while (!path.empty() && path.back()) {
1200
0
                if (path.size() > 1) ret += '}';
1201
0
                path.pop_back();
1202
0
            }
1203
0
            if (!path.empty()) path.back() = true;
1204
0
        }
1205
0
        return true;
1206
0
    }
1207
public:
1208
    TRDescriptor(std::unique_ptr<PubkeyProvider> internal_key, std::vector<std::unique_ptr<DescriptorImpl>> descs, std::vector<int> depths) :
1209
0
        DescriptorImpl(Vector(std::move(internal_key)), std::move(descs), "tr"), m_depths(std::move(depths))
1210
0
    {
1211
0
        assert(m_subdescriptor_args.size() == m_depths.size());
1212
0
    }
1213
0
    std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; }
1214
0
    bool IsSingleType() const final { return true; }
1215
0
    bool IsSingleKey() const final { return false; }
1216
1217
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1218
1219
0
    std::optional<int64_t> MaxSatisfactionWeight(bool) const override {
1220
        // FIXME: We assume keypath spend, which can lead to very large underestimations.
1221
0
        return 1 + 65;
1222
0
    }
1223
1224
0
    std::optional<int64_t> MaxSatisfactionElems() const override {
1225
        // FIXME: See above, we assume keypath spend.
1226
0
        return 1;
1227
0
    }
1228
1229
    std::unique_ptr<DescriptorImpl> Clone() const override
1230
0
    {
1231
0
        std::vector<std::unique_ptr<DescriptorImpl>> subdescs;
1232
0
        subdescs.reserve(m_subdescriptor_args.size());
1233
0
        std::transform(m_subdescriptor_args.begin(), m_subdescriptor_args.end(), subdescs.begin(), [](const std::unique_ptr<DescriptorImpl>& d) { return d->Clone(); });
1234
0
        return std::make_unique<TRDescriptor>(m_pubkey_args.at(0)->Clone(), std::move(subdescs), m_depths);
1235
0
    }
1236
};
1237
1238
/* We instantiate Miniscript here with a simple integer as key type.
1239
 * The value of these key integers are an index in the
1240
 * DescriptorImpl::m_pubkey_args vector.
1241
 */
1242
1243
/**
1244
 * The context for converting a Miniscript descriptor into a Script.
1245
 */
1246
class ScriptMaker {
1247
    //! Keys contained in the Miniscript (the evaluation of DescriptorImpl::m_pubkey_args).
1248
    const std::vector<CPubKey>& m_keys;
1249
    //! The script context we're operating within (Tapscript or P2WSH).
1250
    const miniscript::MiniscriptContext m_script_ctx;
1251
1252
    //! Get the ripemd160(sha256()) hash of this key.
1253
    //! Any key that is valid in a descriptor serializes as 32 bytes within a Tapscript context. So we
1254
    //! must not hash the sign-bit byte in this case.
1255
0
    uint160 GetHash160(uint32_t key) const {
1256
0
        if (miniscript::IsTapscript(m_script_ctx)) {
1257
0
            return Hash160(XOnlyPubKey{m_keys[key]});
1258
0
        }
1259
0
        return m_keys[key].GetID();
1260
0
    }
1261
1262
public:
1263
0
    ScriptMaker(const std::vector<CPubKey>& keys LIFETIMEBOUND, const miniscript::MiniscriptContext script_ctx) : m_keys(keys), m_script_ctx{script_ctx} {}
1264
1265
0
    std::vector<unsigned char> ToPKBytes(uint32_t key) const {
1266
        // In Tapscript keys always serialize as x-only, whether an x-only key was used in the descriptor or not.
1267
0
        if (!miniscript::IsTapscript(m_script_ctx)) {
1268
0
            return {m_keys[key].begin(), m_keys[key].end()};
1269
0
        }
1270
0
        const XOnlyPubKey xonly_pubkey{m_keys[key]};
1271
0
        return {xonly_pubkey.begin(), xonly_pubkey.end()};
1272
0
    }
1273
1274
0
    std::vector<unsigned char> ToPKHBytes(uint32_t key) const {
1275
0
        auto id = GetHash160(key);
1276
0
        return {id.begin(), id.end()};
1277
0
    }
1278
};
1279
1280
/**
1281
 * The context for converting a Miniscript descriptor to its textual form.
1282
 */
1283
class StringMaker {
1284
    //! To convert private keys for private descriptors.
1285
    const SigningProvider* m_arg;
1286
    //! Keys contained in the Miniscript (a reference to DescriptorImpl::m_pubkey_args).
1287
    const std::vector<std::unique_ptr<PubkeyProvider>>& m_pubkeys;
1288
    //! Whether to serialize keys as private or public.
1289
    bool m_private;
1290
1291
public:
1292
    StringMaker(const SigningProvider* arg LIFETIMEBOUND, const std::vector<std::unique_ptr<PubkeyProvider>>& pubkeys LIFETIMEBOUND, bool priv)
1293
0
        : m_arg(arg), m_pubkeys(pubkeys), m_private(priv) {}
1294
1295
    std::optional<std::string> ToString(uint32_t key) const
1296
0
    {
1297
0
        std::string ret;
1298
0
        if (m_private) {
1299
0
            if (!m_pubkeys[key]->ToPrivateString(*m_arg, ret)) return {};
1300
0
        } else {
1301
0
            ret = m_pubkeys[key]->ToString();
1302
0
        }
1303
0
        return ret;
1304
0
    }
1305
};
1306
1307
class MiniscriptDescriptor final : public DescriptorImpl
1308
{
1309
private:
1310
    miniscript::NodeRef<uint32_t> m_node;
1311
1312
protected:
1313
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts,
1314
                                     FlatSigningProvider& provider) const override
1315
0
    {
1316
0
        const auto script_ctx{m_node->GetMsCtx()};
1317
0
        for (const auto& key : keys) {
1318
0
            if (miniscript::IsTapscript(script_ctx)) {
1319
0
                provider.pubkeys.emplace(Hash160(XOnlyPubKey{key}), key);
1320
0
            } else {
1321
0
                provider.pubkeys.emplace(key.GetID(), key);
1322
0
            }
1323
0
        }
1324
0
        return Vector(m_node->ToScript(ScriptMaker(keys, script_ctx)));
1325
0
    }
1326
1327
public:
1328
    MiniscriptDescriptor(std::vector<std::unique_ptr<PubkeyProvider>> providers, miniscript::NodeRef<uint32_t> node)
1329
0
        : DescriptorImpl(std::move(providers), "?"), m_node(std::move(node)) {}
1330
1331
    bool ToStringHelper(const SigningProvider* arg, std::string& out, const StringType type,
1332
                        const DescriptorCache* cache = nullptr) const override
1333
0
    {
1334
0
        if (const auto res = m_node->ToString(StringMaker(arg, m_pubkey_args, type == StringType::PRIVATE))) {
1335
0
            out = *res;
1336
0
            return true;
1337
0
        }
1338
0
        return false;
1339
0
    }
1340
1341
0
    bool IsSolvable() const override { return true; }
1342
0
    bool IsSingleType() const final { return true; }
1343
0
    bool IsSingleKey() const final { return false; }
1344
1345
0
    std::optional<int64_t> ScriptSize() const override { return m_node->ScriptSize(); }
1346
1347
0
    std::optional<int64_t> MaxSatSize(bool) const override {
1348
        // For Miniscript we always assume high-R ECDSA signatures.
1349
0
        return m_node->GetWitnessSize();
1350
0
    }
1351
1352
0
    std::optional<int64_t> MaxSatisfactionElems() const override {
1353
0
        return m_node->GetStackSize();
1354
0
    }
1355
1356
    std::unique_ptr<DescriptorImpl> Clone() const override
1357
0
    {
1358
0
        std::vector<std::unique_ptr<PubkeyProvider>> providers;
1359
0
        providers.reserve(m_pubkey_args.size());
1360
0
        for (const auto& arg : m_pubkey_args) {
1361
0
            providers.push_back(arg->Clone());
1362
0
        }
1363
0
        return std::make_unique<MiniscriptDescriptor>(std::move(providers), m_node->Clone());
1364
0
    }
1365
};
1366
1367
/** A parsed rawtr(...) descriptor. */
1368
class RawTRDescriptor final : public DescriptorImpl
1369
{
1370
protected:
1371
    std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, std::span<const CScript> scripts, FlatSigningProvider& out) const override
1372
0
    {
1373
0
        assert(keys.size() == 1);
1374
0
        XOnlyPubKey xpk(keys[0]);
1375
0
        if (!xpk.IsFullyValid()) return {};
1376
0
        WitnessV1Taproot output{xpk};
1377
0
        return Vector(GetScriptForDestination(output));
1378
0
    }
1379
public:
1380
0
    RawTRDescriptor(std::unique_ptr<PubkeyProvider> output_key) : DescriptorImpl(Vector(std::move(output_key)), "rawtr") {}
1381
0
    std::optional<OutputType> GetOutputType() const override { return OutputType::BECH32M; }
1382
0
    bool IsSingleType() const final { return true; }
1383
0
    bool IsSingleKey() const final { return false; }
1384
1385
0
    std::optional<int64_t> ScriptSize() const override { return 1 + 1 + 32; }
1386
1387
0
    std::optional<int64_t> MaxSatisfactionWeight(bool) const override {
1388
        // We can't know whether there is a script path, so assume key path spend.
1389
0
        return 1 + 65;
1390
0
    }
1391
1392
0
    std::optional<int64_t> MaxSatisfactionElems() const override {
1393
        // See above, we assume keypath spend.
1394
0
        return 1;
1395
0
    }
1396
1397
    std::unique_ptr<DescriptorImpl> Clone() const override
1398
0
    {
1399
0
        return std::make_unique<RawTRDescriptor>(m_pubkey_args.at(0)->Clone());
1400
0
    }
1401
};
1402
1403
////////////////////////////////////////////////////////////////////////////
1404
// Parser                                                                 //
1405
////////////////////////////////////////////////////////////////////////////
1406
1407
enum class ParseScriptContext {
1408
    TOP,     //!< Top-level context (script goes directly in scriptPubKey)
1409
    P2SH,    //!< Inside sh() (script becomes P2SH redeemScript)
1410
    P2WPKH,  //!< Inside wpkh() (no script, pubkey only)
1411
    P2WSH,   //!< Inside wsh() (script becomes v0 witness script)
1412
    P2TR,    //!< Inside tr() (either internal key, or BIP342 script leaf)
1413
};
1414
1415
std::optional<uint32_t> ParseKeyPathNum(std::span<const char> elem, bool& apostrophe, std::string& error)
1416
0
{
1417
0
    bool hardened = false;
1418
0
    if (elem.size() > 0) {
1419
0
        const char last = elem[elem.size() - 1];
1420
0
        if (last == '\'' || last == 'h') {
1421
0
            elem = elem.first(elem.size() - 1);
1422
0
            hardened = true;
1423
0
            apostrophe = last == '\'';
1424
0
        }
1425
0
    }
1426
0
    const auto p{ToIntegral<uint32_t>(std::string_view{elem.begin(), elem.end()})};
1427
0
    if (!p) {
1428
0
        error = strprintf("Key path value '%s' is not a valid uint32", std::string_view{elem.begin(), elem.end()});
Line
Count
Source
1172
0
#define strprintf tfm::format
1429
0
        return std::nullopt;
1430
0
    } else if (*p > 0x7FFFFFFFUL) {
1431
0
        error = strprintf("Key path value %u is out of range", *p);
Line
Count
Source
1172
0
#define strprintf tfm::format
1432
0
        return std::nullopt;
1433
0
    }
1434
1435
0
    return std::make_optional<uint32_t>(*p | (((uint32_t)hardened) << 31));
1436
0
}
1437
1438
/**
1439
 * Parse a key path, being passed a split list of elements (the first element is ignored because it is always the key).
1440
 *
1441
 * @param[in] split BIP32 path string, using either ' or h for hardened derivation
1442
 * @param[out] out Vector of parsed key paths
1443
 * @param[out] apostrophe only updated if hardened derivation is found
1444
 * @param[out] error parsing error message
1445
 * @param[in] allow_multipath Allows the parsed path to use the multipath specifier
1446
 * @returns false if parsing failed
1447
 **/
1448
[[nodiscard]] bool ParseKeyPath(const std::vector<std::span<const char>>& split, std::vector<KeyPath>& out, bool& apostrophe, std::string& error, bool allow_multipath)
1449
0
{
1450
0
    KeyPath path;
1451
0
    struct MultipathSubstitutes {
1452
0
        size_t placeholder_index;
1453
0
        std::vector<uint32_t> values;
1454
0
    };
1455
0
    std::optional<MultipathSubstitutes> substitutes;
1456
1457
0
    for (size_t i = 1; i < split.size(); ++i) {
1458
0
        const std::span<const char>& elem = split[i];
1459
1460
        // Check if element contains multipath specifier
1461
0
        if (!elem.empty() && elem.front() == '<' && elem.back() == '>') {
1462
0
            if (!allow_multipath) {
1463
0
                error = strprintf("Key path value '%s' specifies multipath in a section where multipath is not allowed", std::string(elem.begin(), elem.end()));
Line
Count
Source
1172
0
#define strprintf tfm::format
1464
0
                return false;
1465
0
            }
1466
0
            if (substitutes) {
1467
0
                error = "Multiple multipath key path specifiers found";
1468
0
                return false;
1469
0
            }
1470
1471
            // Parse each possible value
1472
0
            std::vector<std::span<const char>> nums = Split(std::span(elem.begin()+1, elem.end()-1), ";");
1473
0
            if (nums.size() < 2) {
1474
0
                error = "Multipath key path specifiers must have at least two items";
1475
0
                return false;
1476
0
            }
1477
1478
0
            substitutes.emplace();
1479
0
            std::unordered_set<uint32_t> seen_substitutes;
1480
0
            for (const auto& num : nums) {
1481
0
                const auto& op_num = ParseKeyPathNum(num, apostrophe, error);
1482
0
                if (!op_num) return false;
1483
0
                auto [_, inserted] = seen_substitutes.insert(*op_num);
1484
0
                if (!inserted) {
1485
0
                    error = strprintf("Duplicated key path value %u in multipath specifier", *op_num);
Line
Count
Source
1172
0
#define strprintf tfm::format
1486
0
                    return false;
1487
0
                }
1488
0
                substitutes->values.emplace_back(*op_num);
1489
0
            }
1490
1491
0
            path.emplace_back(); // Placeholder for multipath segment
1492
0
            substitutes->placeholder_index = path.size() - 1;
1493
0
        } else {
1494
0
            const auto& op_num = ParseKeyPathNum(elem, apostrophe, error);
1495
0
            if (!op_num) return false;
1496
0
            path.emplace_back(*op_num);
1497
0
        }
1498
0
    }
1499
1500
0
    if (!substitutes) {
1501
0
        out.emplace_back(std::move(path));
1502
0
    } else {
1503
        // Replace the multipath placeholder with each value while generating paths
1504
0
        for (uint32_t substitute : substitutes->values) {
1505
0
            KeyPath branch_path = path;
1506
0
            branch_path[substitutes->placeholder_index] = substitute;
1507
0
            out.emplace_back(std::move(branch_path));
1508
0
        }
1509
0
    }
1510
0
    return true;
1511
0
}
1512
1513
/** Parse a public key that excludes origin information. */
1514
std::vector<std::unique_ptr<PubkeyProvider>> ParsePubkeyInner(uint32_t key_exp_index, const std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, bool& apostrophe, std::string& error)
1515
0
{
1516
0
    std::vector<std::unique_ptr<PubkeyProvider>> ret;
1517
0
    bool permit_uncompressed = ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH;
1518
0
    auto split = Split(sp, '/');
1519
0
    std::string str(split[0].begin(), split[0].end());
1520
0
    if (str.size() == 0) {
1521
0
        error = "No key provided";
1522
0
        return {};
1523
0
    }
1524
0
    if (IsSpace(str.front()) || IsSpace(str.back())) {
1525
0
        error = strprintf("Key '%s' is invalid due to whitespace", str);
Line
Count
Source
1172
0
#define strprintf tfm::format
1526
0
        return {};
1527
0
    }
1528
0
    if (split.size() == 1) {
1529
0
        if (IsHex(str)) {
1530
0
            std::vector<unsigned char> data = ParseHex(str);
1531
0
            CPubKey pubkey(data);
1532
0
            if (pubkey.IsValid() && !pubkey.IsValidNonHybrid()) {
1533
0
                error = "Hybrid public keys are not allowed";
1534
0
                return {};
1535
0
            }
1536
0
            if (pubkey.IsFullyValid()) {
1537
0
                if (permit_uncompressed || pubkey.IsCompressed()) {
1538
0
                    ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, false));
1539
0
                    return ret;
1540
0
                } else {
1541
0
                    error = "Uncompressed keys are not allowed";
1542
0
                    return {};
1543
0
                }
1544
0
            } else if (data.size() == 32 && ctx == ParseScriptContext::P2TR) {
1545
0
                unsigned char fullkey[33] = {0x02};
1546
0
                std::copy(data.begin(), data.end(), fullkey + 1);
1547
0
                pubkey.Set(std::begin(fullkey), std::end(fullkey));
1548
0
                if (pubkey.IsFullyValid()) {
1549
0
                    ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, true));
1550
0
                    return ret;
1551
0
                }
1552
0
            }
1553
0
            error = strprintf("Pubkey '%s' is invalid", str);
Line
Count
Source
1172
0
#define strprintf tfm::format
1554
0
            return {};
1555
0
        }
1556
0
        CKey key = DecodeSecret(str);
1557
0
        if (key.IsValid()) {
1558
0
            if (permit_uncompressed || key.IsCompressed()) {
1559
0
                CPubKey pubkey = key.GetPubKey();
1560
0
                out.keys.emplace(pubkey.GetID(), key);
1561
0
                ret.emplace_back(std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey, ctx == ParseScriptContext::P2TR));
1562
0
                return ret;
1563
0
            } else {
1564
0
                error = "Uncompressed keys are not allowed";
1565
0
                return {};
1566
0
            }
1567
0
        }
1568
0
    }
1569
0
    CExtKey extkey = DecodeExtKey(str);
1570
0
    CExtPubKey extpubkey = DecodeExtPubKey(str);
1571
0
    if (!extkey.key.IsValid() && !extpubkey.pubkey.IsValid()) {
1572
0
        error = strprintf("key '%s' is not valid", str);
Line
Count
Source
1172
0
#define strprintf tfm::format
1573
0
        return {};
1574
0
    }
1575
0
    std::vector<KeyPath> paths;
1576
0
    DeriveType type = DeriveType::NO;
1577
0
    if (std::ranges::equal(split.back(), std::span{"*"}.first(1))) {
1578
0
        split.pop_back();
1579
0
        type = DeriveType::UNHARDENED;
1580
0
    } else if (std::ranges::equal(split.back(), std::span{"*'"}.first(2)) || std::ranges::equal(split.back(), std::span{"*h"}.first(2))) {
1581
0
        apostrophe = std::ranges::equal(split.back(), std::span{"*'"}.first(2));
1582
0
        split.pop_back();
1583
0
        type = DeriveType::HARDENED;
1584
0
    }
1585
0
    if (!ParseKeyPath(split, paths, apostrophe, error, /*allow_multipath=*/true)) return {};
1586
0
    if (extkey.key.IsValid()) {
1587
0
        extpubkey = extkey.Neuter();
1588
0
        out.keys.emplace(extpubkey.pubkey.GetID(), extkey.key);
1589
0
    }
1590
0
    for (auto& path : paths) {
1591
0
        ret.emplace_back(std::make_unique<BIP32PubkeyProvider>(key_exp_index, extpubkey, std::move(path), type, apostrophe));
1592
0
    }
1593
0
    return ret;
1594
0
}
1595
1596
/** Parse a public key including origin information (if enabled). */
1597
std::vector<std::unique_ptr<PubkeyProvider>> ParsePubkey(uint32_t key_exp_index, const std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error)
1598
0
{
1599
0
    std::vector<std::unique_ptr<PubkeyProvider>> ret;
1600
0
    auto origin_split = Split(sp, ']');
1601
0
    if (origin_split.size() > 2) {
1602
0
        error = "Multiple ']' characters found for a single pubkey";
1603
0
        return {};
1604
0
    }
1605
    // This is set if either the origin or path suffix contains a hardened derivation.
1606
0
    bool apostrophe = false;
1607
0
    if (origin_split.size() == 1) {
1608
0
        return ParsePubkeyInner(key_exp_index, origin_split[0], ctx, out, apostrophe, error);
1609
0
    }
1610
0
    if (origin_split[0].empty() || origin_split[0][0] != '[') {
1611
0
        error = strprintf("Key origin start '[ character expected but not found, got '%c' instead",
Line
Count
Source
1172
0
#define strprintf tfm::format
1612
0
                          origin_split[0].empty() ? /** empty, implies split char */ ']' : origin_split[0][0]);
1613
0
        return {};
1614
0
    }
1615
0
    auto slash_split = Split(origin_split[0].subspan(1), '/');
1616
0
    if (slash_split[0].size() != 8) {
1617
0
        error = strprintf("Fingerprint is not 4 bytes (%u characters instead of 8 characters)", slash_split[0].size());
Line
Count
Source
1172
0
#define strprintf tfm::format
1618
0
        return {};
1619
0
    }
1620
0
    std::string fpr_hex = std::string(slash_split[0].begin(), slash_split[0].end());
1621
0
    if (!IsHex(fpr_hex)) {
1622
0
        error = strprintf("Fingerprint '%s' is not hex", fpr_hex);
Line
Count
Source
1172
0
#define strprintf tfm::format
1623
0
        return {};
1624
0
    }
1625
0
    auto fpr_bytes = ParseHex(fpr_hex);
1626
0
    KeyOriginInfo info;
1627
0
    static_assert(sizeof(info.fingerprint) == 4, "Fingerprint must be 4 bytes");
1628
0
    assert(fpr_bytes.size() == 4);
1629
0
    std::copy(fpr_bytes.begin(), fpr_bytes.end(), info.fingerprint);
1630
0
    std::vector<KeyPath> path;
1631
0
    if (!ParseKeyPath(slash_split, path, apostrophe, error, /*allow_multipath=*/false)) return {};
1632
0
    info.path = path.at(0);
1633
0
    auto providers = ParsePubkeyInner(key_exp_index, origin_split[1], ctx, out, apostrophe, error);
1634
0
    if (providers.empty()) return {};
1635
0
    ret.reserve(providers.size());
1636
0
    for (auto& prov : providers) {
1637
0
        ret.emplace_back(std::make_unique<OriginPubkeyProvider>(key_exp_index, info, std::move(prov), apostrophe));
1638
0
    }
1639
0
    return ret;
1640
0
}
1641
1642
std::unique_ptr<PubkeyProvider> InferPubkey(const CPubKey& pubkey, ParseScriptContext ctx, const SigningProvider& provider)
1643
0
{
1644
    // Key cannot be hybrid
1645
0
    if (!pubkey.IsValidNonHybrid()) {
1646
0
        return nullptr;
1647
0
    }
1648
    // Uncompressed is only allowed in TOP and P2SH contexts
1649
0
    if (ctx != ParseScriptContext::TOP && ctx != ParseScriptContext::P2SH && !pubkey.IsCompressed()) {
1650
0
        return nullptr;
1651
0
    }
1652
0
    std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, false);
1653
0
    KeyOriginInfo info;
1654
0
    if (provider.GetKeyOrigin(pubkey.GetID(), info)) {
1655
0
        return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false);
1656
0
    }
1657
0
    return key_provider;
1658
0
}
1659
1660
std::unique_ptr<PubkeyProvider> InferXOnlyPubkey(const XOnlyPubKey& xkey, ParseScriptContext ctx, const SigningProvider& provider)
1661
0
{
1662
0
    CPubKey pubkey{xkey.GetEvenCorrespondingCPubKey()};
1663
0
    std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey, true);
1664
0
    KeyOriginInfo info;
1665
0
    if (provider.GetKeyOriginByXOnly(xkey, info)) {
1666
0
        return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider), /*apostrophe=*/false);
1667
0
    }
1668
0
    return key_provider;
1669
0
}
1670
1671
/**
1672
 * The context for parsing a Miniscript descriptor (either from Script or from its textual representation).
1673
 */
1674
struct KeyParser {
1675
    //! The Key type is an index in DescriptorImpl::m_pubkey_args
1676
    using Key = uint32_t;
1677
    //! Must not be nullptr if parsing from string.
1678
    FlatSigningProvider* m_out;
1679
    //! Must not be nullptr if parsing from Script.
1680
    const SigningProvider* m_in;
1681
    //! List of multipath expanded keys contained in the Miniscript.
1682
    mutable std::vector<std::vector<std::unique_ptr<PubkeyProvider>>> m_keys;
1683
    //! Used to detect key parsing errors within a Miniscript.
1684
    mutable std::string m_key_parsing_error;
1685
    //! The script context we're operating within (Tapscript or P2WSH).
1686
    const miniscript::MiniscriptContext m_script_ctx;
1687
    //! The number of keys that were parsed before starting to parse this Miniscript descriptor.
1688
    uint32_t m_offset;
1689
1690
    KeyParser(FlatSigningProvider* out LIFETIMEBOUND, const SigningProvider* in LIFETIMEBOUND,
1691
              miniscript::MiniscriptContext ctx, uint32_t offset = 0)
1692
0
        : m_out(out), m_in(in), m_script_ctx(ctx), m_offset(offset) {}
1693
1694
0
    bool KeyCompare(const Key& a, const Key& b) const {
1695
0
        return *m_keys.at(a).at(0) < *m_keys.at(b).at(0);
1696
0
    }
1697
1698
0
    ParseScriptContext ParseContext() const {
1699
0
        switch (m_script_ctx) {
1700
0
            case miniscript::MiniscriptContext::P2WSH: return ParseScriptContext::P2WSH;
1701
0
            case miniscript::MiniscriptContext::TAPSCRIPT: return ParseScriptContext::P2TR;
1702
0
        }
1703
0
        assert(false);
1704
0
    }
1705
1706
    template<typename I> std::optional<Key> FromString(I begin, I end) const
1707
0
    {
1708
0
        assert(m_out);
1709
0
        Key key = m_keys.size();
1710
0
        auto pk = ParsePubkey(m_offset + key, {&*begin, &*end}, ParseContext(), *m_out, m_key_parsing_error);
1711
0
        if (pk.empty()) return {};
1712
0
        m_keys.emplace_back(std::move(pk));
1713
0
        return key;
1714
0
    }
1715
1716
    std::optional<std::string> ToString(const Key& key) const
1717
0
    {
1718
0
        return m_keys.at(key).at(0)->ToString();
1719
0
    }
1720
1721
    template<typename I> std::optional<Key> FromPKBytes(I begin, I end) const
1722
0
    {
1723
0
        assert(m_in);
1724
0
        Key key = m_keys.size();
1725
0
        if (miniscript::IsTapscript(m_script_ctx) && end - begin == 32) {
1726
0
            XOnlyPubKey pubkey;
1727
0
            std::copy(begin, end, pubkey.begin());
1728
0
            if (auto pubkey_provider = InferXOnlyPubkey(pubkey, ParseContext(), *m_in)) {
1729
0
                m_keys.emplace_back();
1730
0
                m_keys.back().push_back(std::move(pubkey_provider));
1731
0
                return key;
1732
0
            }
1733
0
        } else if (!miniscript::IsTapscript(m_script_ctx)) {
1734
0
            CPubKey pubkey(begin, end);
1735
0
            if (auto pubkey_provider = InferPubkey(pubkey, ParseContext(), *m_in)) {
1736
0
                m_keys.emplace_back();
1737
0
                m_keys.back().push_back(std::move(pubkey_provider));
1738
0
                return key;
1739
0
            }
1740
0
        }
1741
0
        return {};
1742
0
    }
1743
1744
    template<typename I> std::optional<Key> FromPKHBytes(I begin, I end) const
1745
0
    {
1746
0
        assert(end - begin == 20);
1747
0
        assert(m_in);
1748
0
        uint160 hash;
1749
0
        std::copy(begin, end, hash.begin());
1750
0
        CKeyID keyid(hash);
1751
0
        CPubKey pubkey;
1752
0
        if (m_in->GetPubKey(keyid, pubkey)) {
1753
0
            if (auto pubkey_provider = InferPubkey(pubkey, ParseContext(), *m_in)) {
1754
0
                Key key = m_keys.size();
1755
0
                m_keys.emplace_back();
1756
0
                m_keys.back().push_back(std::move(pubkey_provider));
1757
0
                return key;
1758
0
            }
1759
0
        }
1760
0
        return {};
1761
0
    }
1762
1763
0
    miniscript::MiniscriptContext MsContext() const {
1764
0
        return m_script_ctx;
1765
0
    }
1766
};
1767
1768
/** Parse a script in a particular context. */
1769
// NOLINTNEXTLINE(misc-no-recursion)
1770
std::vector<std::unique_ptr<DescriptorImpl>> ParseScript(uint32_t& key_exp_index, std::span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error)
1771
0
{
1772
0
    using namespace script;
1773
0
    Assume(ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH || ctx == ParseScriptContext::P2TR);
Line
Count
Source
118
0
#define Assume(val) inline_assertion_check<false>(val, __FILE__, __LINE__, __func__, #val)
1774
0
    std::vector<std::unique_ptr<DescriptorImpl>> ret;
1775
0
    auto expr = Expr(sp);
1776
0
    if (Func("pk", expr)) {
1777
0
        auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error);
1778
0
        if (pubkeys.empty()) {
1779
0
            error = strprintf("pk(): %s", error);
Line
Count
Source
1172
0
#define strprintf tfm::format
1780
0
            return {};
1781
0
        }
1782
0
        ++key_exp_index;
1783
0
        for (auto& pubkey : pubkeys) {
1784
0
            ret.emplace_back(std::make_unique<PKDescriptor>(std::move(pubkey), ctx == ParseScriptContext::P2TR));
1785
0
        }
1786
0
        return ret;
1787
0
    }
1788
0
    if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && Func("pkh", expr)) {
1789
0
        auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error);
1790
0
        if (pubkeys.empty()) {
1791
0
            error = strprintf("pkh(): %s", error);
Line
Count
Source
1172
0
#define strprintf tfm::format
1792
0
            return {};
1793
0
        }
1794
0
        ++key_exp_index;
1795
0
        for (auto& pubkey : pubkeys) {
1796
0
            ret.emplace_back(std::make_unique<PKHDescriptor>(std::move(pubkey)));
1797
0
        }
1798
0
        return ret;
1799
0
    }
1800
0
    if (ctx == ParseScriptContext::TOP && Func("combo", expr)) {
1801
0
        auto pubkeys = ParsePubkey(key_exp_index, expr, ctx, out, error);
1802
0
        if (pubkeys.empty()) {
1803
0
            error = strprintf("combo(): %s", error);
Line
Count
Source
1172
0
#define strprintf tfm::format
1804
0
            return {};
1805
0
        }
1806
0
        ++key_exp_index;
1807
0
        for (auto& pubkey : pubkeys) {
1808
0
            ret.emplace_back(std::make_unique<ComboDescriptor>(std::move(pubkey)));
1809
0
        }
1810
0
        return ret;
1811
0
    } else if (Func("combo", expr)) {
1812
0
        error = "Can only have combo() at top level";
1813
0
        return {};
1814
0
    }
1815
0
    const bool multi = Func("multi", expr);
1816
0
    const bool sortedmulti = !multi && Func("sortedmulti", expr);
1817
0
    const bool multi_a = !(multi || sortedmulti) && Func("multi_a", expr);
1818
0
    const bool sortedmulti_a = !(multi || sortedmulti || multi_a) && Func("sortedmulti_a", expr);
1819
0
    if (((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH) && (multi || sortedmulti)) ||
1820
0
        (ctx == ParseScriptContext::P2TR && (multi_a || sortedmulti_a))) {
1821
0
        auto threshold = Expr(expr);
1822
0
        uint32_t thres;
1823
0
        std::vector<std::vector<std::unique_ptr<PubkeyProvider>>> providers; // List of multipath expanded pubkeys
1824
0
        if (const auto maybe_thres{ToIntegral<uint32_t>(std::string_view{threshold.begin(), threshold.end()})}) {
1825
0
            thres = *maybe_thres;
1826
0
        } else {
1827
0
            error = strprintf("Multi threshold '%s' is not valid", std::string(threshold.begin(), threshold.end()));
Line
Count
Source
1172
0
#define strprintf tfm::format
1828
0
            return {};
1829
0
        }
1830
0
        size_t script_size = 0;
1831
0
        size_t max_providers_len = 0;
1832
0
        while (expr.size()) {
1833
0
            if (!Const(",", expr)) {
1834
0
                error = strprintf("Multi: expected ',', got '%c'", expr[0]);
Line
Count
Source
1172
0
#define strprintf tfm::format
1835
0
                return {};
1836
0
            }
1837
0
            auto arg = Expr(expr);
1838
0
            auto pks = ParsePubkey(key_exp_index, arg, ctx, out, error);
1839
0
            if (pks.empty()) {
1840
0
                error = strprintf("Multi: %s", error);
Line
Count
Source
1172
0
#define strprintf tfm::format
1841
0
                return {};
1842
0
            }
1843
0
            script_size += pks.at(0)->GetSize() + 1;
1844
0
            max_providers_len = std::max(max_providers_len, pks.size());
1845
0
            providers.emplace_back(std::move(pks));
1846
0
            key_exp_index++;
1847
0
        }
1848
0
        if ((multi || sortedmulti) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTISIG)) {
1849
0
            error = strprintf("Cannot have %u keys in multisig; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTISIG);
Line
Count
Source
1172
0
#define strprintf tfm::format
1850
0
            return {};
1851
0
        } else if ((multi_a || sortedmulti_a) && (providers.empty() || providers.size() > MAX_PUBKEYS_PER_MULTI_A)) {
1852
0
            error = strprintf("Cannot have %u keys in multi_a; must have between 1 and %d keys, inclusive", providers.size(), MAX_PUBKEYS_PER_MULTI_A);
Line
Count
Source
1172
0
#define strprintf tfm::format
1853
0
            return {};
1854
0
        } else if (thres < 1) {
1855
0
            error = strprintf("Multisig threshold cannot be %d, must be at least 1", thres);
Line
Count
Source
1172
0
#define strprintf tfm::format
1856
0
            return {};
1857
0
        } else if (thres > providers.size()) {
1858
0
            error = strprintf("Multisig threshold cannot be larger than the number of keys; threshold is %d but only %u keys specified", thres, providers.size());
Line
Count
Source
1172
0
#define strprintf tfm::format
1859
0
            return {};
1860
0
        }
1861
0
        if (ctx == ParseScriptContext::TOP) {
1862
0
            if (providers.size() > 3) {
1863
0
                error = strprintf("Cannot have %u pubkeys in bare multisig; only at most 3 pubkeys", providers.size());
Line
Count
Source
1172
0
#define strprintf tfm::format
1864
0
                return {};
1865
0
            }
1866
0
        }
1867
0
        if (ctx == ParseScriptContext::P2SH) {
1868
            // This limits the maximum number of compressed pubkeys to 15.
1869
0
            if (script_size + 3 > MAX_SCRIPT_ELEMENT_SIZE) {
1870
0
                error = strprintf("P2SH script is too large, %d bytes is larger than %d bytes", script_size + 3, MAX_SCRIPT_ELEMENT_SIZE);
Line
Count
Source
1172
0
#define strprintf tfm::format
1871
0
                return {};
1872
0
            }
1873
0
        }
1874
1875
        // Make sure all vecs are of the same length, or exactly length 1
1876
        // For length 1 vectors, clone key providers until vector is the same length
1877
0
        for (auto& vec : providers) {
1878
0
            if (vec.size() == 1) {
1879
0
                for (size_t i = 1; i < max_providers_len; ++i) {
1880
0
                    vec.emplace_back(vec.at(0)->Clone());
1881
0
                }
1882
0
            } else if (vec.size() != max_providers_len) {
1883
0
                error = strprintf("multi(): Multipath derivation paths have mismatched lengths");
Line
Count
Source
1172
0
#define strprintf tfm::format
1884
0
                return {};
1885
0
            }
1886
0
        }
1887
1888
        // Build the final descriptors vector
1889
0
        for (size_t i = 0; i < max_providers_len; ++i) {
1890
            // Build final pubkeys vectors by retrieving the i'th subscript for each vector in subscripts
1891
0
            std::vector<std::unique_ptr<PubkeyProvider>> pubs;
1892
0
            pubs.reserve(providers.size());
1893
0
            for (auto& pub : providers) {
1894
0
                pubs.emplace_back(std::move(pub.at(i)));
1895
0
            }
1896
0
            if (multi || sortedmulti) {
1897
0
                ret.emplace_back(std::make_unique<MultisigDescriptor>(thres, std::move(pubs), sortedmulti));
1898
0
            } else {
1899
0
                ret.emplace_back(std::make_unique<MultiADescriptor>(thres, std::move(pubs), sortedmulti_a));
1900
0
            }
1901
0
        }
1902
0
        return ret;
1903
0
    } else if (multi || sortedmulti) {
1904
0
        error = "Can only have multi/sortedmulti at top level, in sh(), or in wsh()";
1905
0
        return {};
1906
0
    } else if (multi_a || sortedmulti_a) {
1907
0
        error = "Can only have multi_a/sortedmulti_a inside tr()";
1908
0
        return {};
1909
0
    }
1910
0
    if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wpkh", expr)) {
1911
0
        auto pubkeys = ParsePubkey(key_exp_index, expr, ParseScriptContext::P2WPKH, out, error);
1912
0
        if (pubkeys.empty()) {
1913
0
            error = strprintf("wpkh(): %s", error);
Line
Count
Source
1172
0
#define strprintf tfm::format
1914
0
            return {};
1915
0
        }
1916
0
        key_exp_index++;
1917
0
        for (auto& pubkey : pubkeys) {
1918
0
            ret.emplace_back(std::make_unique<WPKHDescriptor>(std::move(pubkey)));
1919
0
        }
1920
0
        return ret;
1921
0
    } else if (Func("wpkh", expr)) {
1922
0
        error = "Can only have wpkh() at top level or inside sh()";
1923
0
        return {};
1924
0
    }
1925
0
    if (ctx == ParseScriptContext::TOP && Func("sh", expr)) {
1926
0
        auto descs = ParseScript(key_exp_index, expr, ParseScriptContext::P2SH, out, error);
1927
0
        if (descs.empty() || expr.size()) return {};
1928
0
        std::vector<std::unique_ptr<DescriptorImpl>> ret;
1929
0
        ret.reserve(descs.size());
1930
0
        for (auto& desc : descs) {
1931
0
            ret.push_back(std::make_unique<SHDescriptor>(std::move(desc)));
1932
0
        }
1933
0
        return ret;
1934
0
    } else if (Func("sh", expr)) {
1935
0
        error = "Can only have sh() at top level";
1936
0
        return {};
1937
0
    }
1938
0
    if ((ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH) && Func("wsh", expr)) {
1939
0
        auto descs = ParseScript(key_exp_index, expr, ParseScriptContext::P2WSH, out, error);
1940
0
        if (descs.empty() || expr.size()) return {};
1941
0
        for (auto& desc : descs) {
1942
0
            ret.emplace_back(std::make_unique<WSHDescriptor>(std::move(desc)));
1943
0
        }
1944
0
        return ret;
1945
0
    } else if (Func("wsh", expr)) {
1946
0
        error = "Can only have wsh() at top level or inside sh()";
1947
0
        return {};
1948
0
    }
1949
0
    if (ctx == ParseScriptContext::TOP && Func("addr", expr)) {
1950
0
        CTxDestination dest = DecodeDestination(std::string(expr.begin(), expr.end()));
1951
0
        if (!IsValidDestination(dest)) {
1952
0
            error = "Address is not valid";
1953
0
            return {};
1954
0
        }
1955
0
        ret.emplace_back(std::make_unique<AddressDescriptor>(std::move(dest)));
1956
0
        return ret;
1957
0
    } else if (Func("addr", expr)) {
1958
0
        error = "Can only have addr() at top level";
1959
0
        return {};
1960
0
    }
1961
0
    if (ctx == ParseScriptContext::TOP && Func("tr", expr)) {
1962
0
        auto arg = Expr(expr);
1963
0
        auto internal_keys = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error);
1964
0
        if (internal_keys.empty()) {
1965
0
            error = strprintf("tr(): %s", error);
Line
Count
Source
1172
0
#define strprintf tfm::format
1966
0
            return {};
1967
0
        }
1968
0
        size_t max_providers_len = internal_keys.size();
1969
0
        ++key_exp_index;
1970
0
        std::vector<std::vector<std::unique_ptr<DescriptorImpl>>> subscripts; //!< list of multipath expanded script subexpressions
1971
0
        std::vector<int> depths; //!< depth in the tree of each subexpression (same length subscripts)
1972
0
        if (expr.size()) {
1973
0
            if (!Const(",", expr)) {
1974
0
                error = strprintf("tr: expected ',', got '%c'", expr[0]);
Line
Count
Source
1172
0
#define strprintf tfm::format
1975
0
                return {};
1976
0
            }
1977
            /** The path from the top of the tree to what we're currently processing.
1978
             * branches[i] == false: left branch in the i'th step from the top; true: right branch.
1979
             */
1980
0
            std::vector<bool> branches;
1981
            // Loop over all provided scripts. In every iteration exactly one script will be processed.
1982
            // Use a do-loop because inside this if-branch we expect at least one script.
1983
0
            do {
1984
                // First process all open braces.
1985
0
                while (Const("{", expr)) {
1986
0
                    branches.push_back(false); // new left branch
1987
0
                    if (branches.size() > TAPROOT_CONTROL_MAX_NODE_COUNT) {
1988
0
                        error = strprintf("tr() supports at most %i nesting levels", TAPROOT_CONTROL_MAX_NODE_COUNT);
Line
Count
Source
1172
0
#define strprintf tfm::format
1989
0
                        return {};
1990
0
                    }
1991
0
                }
1992
                // Process the actual script expression.
1993
0
                auto sarg = Expr(expr);
1994
0
                subscripts.emplace_back(ParseScript(key_exp_index, sarg, ParseScriptContext::P2TR, out, error));
1995
0
                if (subscripts.back().empty()) return {};
1996
0
                max_providers_len = std::max(max_providers_len, subscripts.back().size());
1997
0
                depths.push_back(branches.size());
1998
                // Process closing braces; one is expected for every right branch we were in.
1999
0
                while (branches.size() && branches.back()) {
2000
0
                    if (!Const("}", expr)) {
2001
0
                        error = strprintf("tr(): expected '}' after script expression");
Line
Count
Source
1172
0
#define strprintf tfm::format
2002
0
                        return {};
2003
0
                    }
2004
0
                    branches.pop_back(); // move up one level after encountering '}'
2005
0
                }
2006
                // If after that, we're at the end of a left branch, expect a comma.
2007
0
                if (branches.size() && !branches.back()) {
2008
0
                    if (!Const(",", expr)) {
2009
0
                        error = strprintf("tr(): expected ',' after script expression");
Line
Count
Source
1172
0
#define strprintf tfm::format
2010
0
                        return {};
2011
0
                    }
2012
0
                    branches.back() = true; // And now we're in a right branch.
2013
0
                }
2014
0
            } while (branches.size());
2015
            // After we've explored a whole tree, we must be at the end of the expression.
2016
0
            if (expr.size()) {
2017
0
                error = strprintf("tr(): expected ')' after script expression");
Line
Count
Source
1172
0
#define strprintf tfm::format
2018
0
                return {};
2019
0
            }
2020
0
        }
2021
0
        assert(TaprootBuilder::ValidDepths(depths));
2022
2023
        // Make sure all vecs are of the same length, or exactly length 1
2024
        // For length 1 vectors, clone subdescs until vector is the same length
2025
0
        for (auto& vec : subscripts) {
2026
0
            if (vec.size() == 1) {
2027
0
                for (size_t i = 1; i < max_providers_len; ++i) {
2028
0
                    vec.emplace_back(vec.at(0)->Clone());
2029
0
                }
2030
0
            } else if (vec.size() != max_providers_len) {
2031
0
                error = strprintf("tr(): Multipath subscripts have mismatched lengths");
Line
Count
Source
1172
0
#define strprintf tfm::format
2032
0
                return {};
2033
0
            }
2034
0
        }
2035
2036
0
        if (internal_keys.size() > 1 && internal_keys.size() != max_providers_len) {
2037
0
            error = strprintf("tr(): Multipath internal key mismatches multipath subscripts lengths");
Line
Count
Source
1172
0
#define strprintf tfm::format
2038
0
            return {};
2039
0
        }
2040
2041
0
        while (internal_keys.size() < max_providers_len) {
2042
0
            internal_keys.emplace_back(internal_keys.at(0)->Clone());
2043
0
        }
2044
2045
        // Build the final descriptors vector
2046
0
        for (size_t i = 0; i < max_providers_len; ++i) {
2047
            // Build final subscripts vectors by retrieving the i'th subscript for each vector in subscripts
2048
0
            std::vector<std::unique_ptr<DescriptorImpl>> this_subs;
2049
0
            this_subs.reserve(subscripts.size());
2050
0
            for (auto& subs : subscripts) {
2051
0
                this_subs.emplace_back(std::move(subs.at(i)));
2052
0
            }
2053
0
            ret.emplace_back(std::make_unique<TRDescriptor>(std::move(internal_keys.at(i)), std::move(this_subs), depths));
2054
0
        }
2055
0
        return ret;
2056
2057
2058
0
    } else if (Func("tr", expr)) {
2059
0
        error = "Can only have tr at top level";
2060
0
        return {};
2061
0
    }
2062
0
    if (ctx == ParseScriptContext::TOP && Func("rawtr", expr)) {
2063
0
        auto arg = Expr(expr);
2064
0
        if (expr.size()) {
2065
0
            error = strprintf("rawtr(): only one key expected.");
Line
Count
Source
1172
0
#define strprintf tfm::format
2066
0
            return {};
2067
0
        }
2068
0
        auto output_keys = ParsePubkey(key_exp_index, arg, ParseScriptContext::P2TR, out, error);
2069
0
        if (output_keys.empty()) {
2070
0
            error = strprintf("rawtr(): %s", error);
Line
Count
Source
1172
0
#define strprintf tfm::format
2071
0
            return {};
2072
0
        }
2073
0
        ++key_exp_index;
2074
0
        for (auto& pubkey : output_keys) {
2075
0
            ret.emplace_back(std::make_unique<RawTRDescriptor>(std::move(pubkey)));
2076
0
        }
2077
0
        return ret;
2078
0
    } else if (Func("rawtr", expr)) {
2079
0
        error = "Can only have rawtr at top level";
2080
0
        return {};
2081
0
    }
2082
0
    if (ctx == ParseScriptContext::TOP && Func("raw", expr)) {
2083
0
        std::string str(expr.begin(), expr.end());
2084
0
        if (!IsHex(str)) {
2085
0
            error = "Raw script is not hex";
2086
0
            return {};
2087
0
        }
2088
0
        auto bytes = ParseHex(str);
2089
0
        ret.emplace_back(std::make_unique<RawDescriptor>(CScript(bytes.begin(), bytes.end())));
2090
0
        return ret;
2091
0
    } else if (Func("raw", expr)) {
2092
0
        error = "Can only have raw() at top level";
2093
0
        return {};
2094
0
    }
2095
    // Process miniscript expressions.
2096
0
    {
2097
0
        const auto script_ctx{ctx == ParseScriptContext::P2WSH ? miniscript::MiniscriptContext::P2WSH : miniscript::MiniscriptContext::TAPSCRIPT};
2098
0
        KeyParser parser(/*out = */&out, /* in = */nullptr, /* ctx = */script_ctx, key_exp_index);
2099
0
        auto node = miniscript::FromString(std::string(expr.begin(), expr.end()), parser);
2100
0
        if (parser.m_key_parsing_error != "") {
2101
0
            error = std::move(parser.m_key_parsing_error);
2102
0
            return {};
2103
0
        }
2104
0
        if (node) {
2105
0
            if (ctx != ParseScriptContext::P2WSH && ctx != ParseScriptContext::P2TR) {
2106
0
                error = "Miniscript expressions can only be used in wsh or tr.";
2107
0
                return {};
2108
0
            }
2109
0
            if (!node->IsSane() || node->IsNotSatisfiable()) {
2110
                // Try to find the first insane sub for better error reporting.
2111
0
                auto insane_node = node.get();
2112
0
                if (const auto sub = node->FindInsaneSub()) insane_node = sub;
2113
0
                if (const auto str = insane_node->ToString(parser)) error = *str;
2114
0
                if (!insane_node->IsValid()) {
2115
0
                    error += " is invalid";
2116
0
                } else if (!node->IsSane()) {
2117
0
                    error += " is not sane";
2118
0
                    if (!insane_node->IsNonMalleable()) {
2119
0
                        error += ": malleable witnesses exist";
2120
0
                    } else if (insane_node == node.get() && !insane_node->NeedsSignature()) {
2121
0
                        error += ": witnesses without signature exist";
2122
0
                    } else if (!insane_node->CheckTimeLocksMix()) {
2123
0
                        error += ": contains mixes of timelocks expressed in blocks and seconds";
2124
0
                    } else if (!insane_node->CheckDuplicateKey()) {
2125
0
                        error += ": contains duplicate public keys";
2126
0
                    } else if (!insane_node->ValidSatisfactions()) {
2127
0
                        error += ": needs witnesses that may exceed resource limits";
2128
0
                    }
2129
0
                } else {
2130
0
                    error += " is not satisfiable";
2131
0
                }
2132
0
                return {};
2133
0
            }
2134
            // A signature check is required for a miniscript to be sane. Therefore no sane miniscript
2135
            // may have an empty list of public keys.
2136
0
            CHECK_NONFATAL(!parser.m_keys.empty());
Line
Count
Source
103
0
    inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition)
2137
0
            key_exp_index += parser.m_keys.size();
2138
            // Make sure all vecs are of the same length, or exactly length 1
2139
            // For length 1 vectors, clone subdescs until vector is the same length
2140
0
            size_t num_multipath = std::max_element(parser.m_keys.begin(), parser.m_keys.end(),
2141
0
                    [](const std::vector<std::unique_ptr<PubkeyProvider>>& a, const std::vector<std::unique_ptr<PubkeyProvider>>& b) {
2142
0
                        return a.size() < b.size();
2143
0
                    })->size();
2144
2145
0
            for (auto& vec : parser.m_keys) {
2146
0
                if (vec.size() == 1) {
2147
0
                    for (size_t i = 1; i < num_multipath; ++i) {
2148
0
                        vec.emplace_back(vec.at(0)->Clone());
2149
0
                    }
2150
0
                } else if (vec.size() != num_multipath) {
2151
0
                    error = strprintf("Miniscript: Multipath derivation paths have mismatched lengths");
Line
Count
Source
1172
0
#define strprintf tfm::format
2152
0
                    return {};
2153
0
                }
2154
0
            }
2155
2156
            // Build the final descriptors vector
2157
0
            for (size_t i = 0; i < num_multipath; ++i) {
2158
                // Build final pubkeys vectors by retrieving the i'th subscript for each vector in subscripts
2159
0
                std::vector<std::unique_ptr<PubkeyProvider>> pubs;
2160
0
                pubs.reserve(parser.m_keys.size());
2161
0
                for (auto& pub : parser.m_keys) {
2162
0
                    pubs.emplace_back(std::move(pub.at(i)));
2163
0
                }
2164
0
                ret.emplace_back(std::make_unique<MiniscriptDescriptor>(std::move(pubs), node->Clone()));
2165
0
            }
2166
0
            return ret;
2167
0
        }
2168
0
    }
2169
0
    if (ctx == ParseScriptContext::P2SH) {
2170
0
        error = "A function is needed within P2SH";
2171
0
        return {};
2172
0
    } else if (ctx == ParseScriptContext::P2WSH) {
2173
0
        error = "A function is needed within P2WSH";
2174
0
        return {};
2175
0
    }
2176
0
    error = strprintf("'%s' is not a valid descriptor function", std::string(expr.begin(), expr.end()));
Line
Count
Source
1172
0
#define strprintf tfm::format
2177
0
    return {};
2178
0
}
2179
2180
std::unique_ptr<DescriptorImpl> InferMultiA(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider)
2181
0
{
2182
0
    auto match = MatchMultiA(script);
2183
0
    if (!match) return {};
2184
0
    std::vector<std::unique_ptr<PubkeyProvider>> keys;
2185
0
    keys.reserve(match->second.size());
2186
0
    for (const auto keyspan : match->second) {
2187
0
        if (keyspan.size() != 32) return {};
2188
0
        auto key = InferXOnlyPubkey(XOnlyPubKey{keyspan}, ctx, provider);
2189
0
        if (!key) return {};
2190
0
        keys.push_back(std::move(key));
2191
0
    }
2192
0
    return std::make_unique<MultiADescriptor>(match->first, std::move(keys));
2193
0
}
2194
2195
// NOLINTNEXTLINE(misc-no-recursion)
2196
std::unique_ptr<DescriptorImpl> InferScript(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider)
2197
0
{
2198
0
    if (ctx == ParseScriptContext::P2TR && script.size() == 34 && script[0] == 32 && script[33] == OP_CHECKSIG) {
2199
0
        XOnlyPubKey key{std::span{script}.subspan(1, 32)};
2200
0
        return std::make_unique<PKDescriptor>(InferXOnlyPubkey(key, ctx, provider), true);
2201
0
    }
2202
2203
0
    if (ctx == ParseScriptContext::P2TR) {
2204
0
        auto ret = InferMultiA(script, ctx, provider);
2205
0
        if (ret) return ret;
2206
0
    }
2207
2208
0
    std::vector<std::vector<unsigned char>> data;
2209
0
    TxoutType txntype = Solver(script, data);
2210
2211
0
    if (txntype == TxoutType::PUBKEY && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
2212
0
        CPubKey pubkey(data[0]);
2213
0
        if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
2214
0
            return std::make_unique<PKDescriptor>(std::move(pubkey_provider));
2215
0
        }
2216
0
    }
2217
0
    if (txntype == TxoutType::PUBKEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
2218
0
        uint160 hash(data[0]);
2219
0
        CKeyID keyid(hash);
2220
0
        CPubKey pubkey;
2221
0
        if (provider.GetPubKey(keyid, pubkey)) {
2222
0
            if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
2223
0
                return std::make_unique<PKHDescriptor>(std::move(pubkey_provider));
2224
0
            }
2225
0
        }
2226
0
    }
2227
0
    if (txntype == TxoutType::WITNESS_V0_KEYHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) {
2228
0
        uint160 hash(data[0]);
2229
0
        CKeyID keyid(hash);
2230
0
        CPubKey pubkey;
2231
0
        if (provider.GetPubKey(keyid, pubkey)) {
2232
0
            if (auto pubkey_provider = InferPubkey(pubkey, ParseScriptContext::P2WPKH, provider)) {
2233
0
                return std::make_unique<WPKHDescriptor>(std::move(pubkey_provider));
2234
0
            }
2235
0
        }
2236
0
    }
2237
0
    if (txntype == TxoutType::MULTISIG && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH || ctx == ParseScriptContext::P2WSH)) {
2238
0
        bool ok = true;
2239
0
        std::vector<std::unique_ptr<PubkeyProvider>> providers;
2240
0
        for (size_t i = 1; i + 1 < data.size(); ++i) {
2241
0
            CPubKey pubkey(data[i]);
2242
0
            if (auto pubkey_provider = InferPubkey(pubkey, ctx, provider)) {
2243
0
                providers.push_back(std::move(pubkey_provider));
2244
0
            } else {
2245
0
                ok = false;
2246
0
                break;
2247
0
            }
2248
0
        }
2249
0
        if (ok) return std::make_unique<MultisigDescriptor>((int)data[0][0], std::move(providers));
2250
0
    }
2251
0
    if (txntype == TxoutType::SCRIPTHASH && ctx == ParseScriptContext::TOP) {
2252
0
        uint160 hash(data[0]);
2253
0
        CScriptID scriptid(hash);
2254
0
        CScript subscript;
2255
0
        if (provider.GetCScript(scriptid, subscript)) {
2256
0
            auto sub = InferScript(subscript, ParseScriptContext::P2SH, provider);
2257
0
            if (sub) return std::make_unique<SHDescriptor>(std::move(sub));
2258
0
        }
2259
0
    }
2260
0
    if (txntype == TxoutType::WITNESS_V0_SCRIPTHASH && (ctx == ParseScriptContext::TOP || ctx == ParseScriptContext::P2SH)) {
2261
0
        CScriptID scriptid{RIPEMD160(data[0])};
2262
0
        CScript subscript;
2263
0
        if (provider.GetCScript(scriptid, subscript)) {
2264
0
            auto sub = InferScript(subscript, ParseScriptContext::P2WSH, provider);
2265
0
            if (sub) return std::make_unique<WSHDescriptor>(std::move(sub));
2266
0
        }
2267
0
    }
2268
0
    if (txntype == TxoutType::WITNESS_V1_TAPROOT && ctx == ParseScriptContext::TOP) {
2269
        // Extract x-only pubkey from output.
2270
0
        XOnlyPubKey pubkey;
2271
0
        std::copy(data[0].begin(), data[0].end(), pubkey.begin());
2272
        // Request spending data.
2273
0
        TaprootSpendData tap;
2274
0
        if (provider.GetTaprootSpendData(pubkey, tap)) {
2275
            // If found, convert it back to tree form.
2276
0
            auto tree = InferTaprootTree(tap, pubkey);
2277
0
            if (tree) {
2278
                // If that works, try to infer subdescriptors for all leaves.
2279
0
                bool ok = true;
2280
0
                std::vector<std::unique_ptr<DescriptorImpl>> subscripts; //!< list of script subexpressions
2281
0
                std::vector<int> depths; //!< depth in the tree of each subexpression (same length subscripts)
2282
0
                for (const auto& [depth, script, leaf_ver] : *tree) {
2283
0
                    std::unique_ptr<DescriptorImpl> subdesc;
2284
0
                    if (leaf_ver == TAPROOT_LEAF_TAPSCRIPT) {
2285
0
                        subdesc = InferScript(CScript(script.begin(), script.end()), ParseScriptContext::P2TR, provider);
2286
0
                    }
2287
0
                    if (!subdesc) {
2288
0
                        ok = false;
2289
0
                        break;
2290
0
                    } else {
2291
0
                        subscripts.push_back(std::move(subdesc));
2292
0
                        depths.push_back(depth);
2293
0
                    }
2294
0
                }
2295
0
                if (ok) {
2296
0
                    auto key = InferXOnlyPubkey(tap.internal_key, ParseScriptContext::P2TR, provider);
2297
0
                    return std::make_unique<TRDescriptor>(std::move(key), std::move(subscripts), std::move(depths));
2298
0
                }
2299
0
            }
2300
0
        }
2301
        // If the above doesn't work, construct a rawtr() descriptor with just the encoded x-only pubkey.
2302
0
        if (pubkey.IsFullyValid()) {
2303
0
            auto key = InferXOnlyPubkey(pubkey, ParseScriptContext::P2TR, provider);
2304
0
            if (key) {
2305
0
                return std::make_unique<RawTRDescriptor>(std::move(key));
2306
0
            }
2307
0
        }
2308
0
    }
2309
2310
0
    if (ctx == ParseScriptContext::P2WSH || ctx == ParseScriptContext::P2TR) {
2311
0
        const auto script_ctx{ctx == ParseScriptContext::P2WSH ? miniscript::MiniscriptContext::P2WSH : miniscript::MiniscriptContext::TAPSCRIPT};
2312
0
        KeyParser parser(/* out = */nullptr, /* in = */&provider, /* ctx = */script_ctx);
2313
0
        auto node = miniscript::FromScript(script, parser);
2314
0
        if (node && node->IsSane()) {
2315
0
            std::vector<std::unique_ptr<PubkeyProvider>> keys;
2316
0
            keys.reserve(parser.m_keys.size());
2317
0
            for (auto& key : parser.m_keys) {
2318
0
                keys.emplace_back(std::move(key.at(0)));
2319
0
            }
2320
0
            return std::make_unique<MiniscriptDescriptor>(std::move(keys), std::move(node));
2321
0
        }
2322
0
    }
2323
2324
    // The following descriptors are all top-level only descriptors.
2325
    // So if we are not at the top level, return early.
2326
0
    if (ctx != ParseScriptContext::TOP) return nullptr;
2327
2328
0
    CTxDestination dest;
2329
0
    if (ExtractDestination(script, dest)) {
2330
0
        if (GetScriptForDestination(dest) == script) {
2331
0
            return std::make_unique<AddressDescriptor>(std::move(dest));
2332
0
        }
2333
0
    }
2334
2335
0
    return std::make_unique<RawDescriptor>(script);
2336
0
}
2337
2338
2339
} // namespace
2340
2341
/** Check a descriptor checksum, and update desc to be the checksum-less part. */
2342
bool CheckChecksum(std::span<const char>& sp, bool require_checksum, std::string& error, std::string* out_checksum = nullptr)
2343
0
{
2344
0
    auto check_split = Split(sp, '#');
2345
0
    if (check_split.size() > 2) {
2346
0
        error = "Multiple '#' symbols";
2347
0
        return false;
2348
0
    }
2349
0
    if (check_split.size() == 1 && require_checksum){
2350
0
        error = "Missing checksum";
2351
0
        return false;
2352
0
    }
2353
0
    if (check_split.size() == 2) {
2354
0
        if (check_split[1].size() != 8) {
2355
0
            error = strprintf("Expected 8 character checksum, not %u characters", check_split[1].size());
Line
Count
Source
1172
0
#define strprintf tfm::format
2356
0
            return false;
2357
0
        }
2358
0
    }
2359
0
    auto checksum = DescriptorChecksum(check_split[0]);
2360
0
    if (checksum.empty()) {
2361
0
        error = "Invalid characters in payload";
2362
0
        return false;
2363
0
    }
2364
0
    if (check_split.size() == 2) {
2365
0
        if (!std::equal(checksum.begin(), checksum.end(), check_split[1].begin())) {
2366
0
            error = strprintf("Provided checksum '%s' does not match computed checksum '%s'", std::string(check_split[1].begin(), check_split[1].end()), checksum);
Line
Count
Source
1172
0
#define strprintf tfm::format
2367
0
            return false;
2368
0
        }
2369
0
    }
2370
0
    if (out_checksum) *out_checksum = std::move(checksum);
2371
0
    sp = check_split[0];
2372
0
    return true;
2373
0
}
2374
2375
std::vector<std::unique_ptr<Descriptor>> Parse(const std::string& descriptor, FlatSigningProvider& out, std::string& error, bool require_checksum)
2376
0
{
2377
0
    std::span<const char> sp{descriptor};
2378
0
    if (!CheckChecksum(sp, require_checksum, error)) return {};
2379
0
    uint32_t key_exp_index = 0;
2380
0
    auto ret = ParseScript(key_exp_index, sp, ParseScriptContext::TOP, out, error);
2381
0
    if (sp.size() == 0 && !ret.empty()) {
2382
0
        std::vector<std::unique_ptr<Descriptor>> descs;
2383
0
        descs.reserve(ret.size());
2384
0
        for (auto& r : ret) {
2385
0
            descs.emplace_back(std::unique_ptr<Descriptor>(std::move(r)));
2386
0
        }
2387
0
        return descs;
2388
0
    }
2389
0
    return {};
2390
0
}
2391
2392
std::string GetDescriptorChecksum(const std::string& descriptor)
2393
0
{
2394
0
    std::string ret;
2395
0
    std::string error;
2396
0
    std::span<const char> sp{descriptor};
2397
0
    if (!CheckChecksum(sp, false, error, &ret)) return "";
2398
0
    return ret;
2399
0
}
2400
2401
std::unique_ptr<Descriptor> InferDescriptor(const CScript& script, const SigningProvider& provider)
2402
0
{
2403
0
    return InferScript(script, ParseScriptContext::TOP, provider);
2404
0
}
2405
2406
uint256 DescriptorID(const Descriptor& desc)
2407
0
{
2408
0
    std::string desc_str = desc.ToString(/*compat_format=*/true);
2409
0
    uint256 id;
2410
0
    CSHA256().Write((unsigned char*)desc_str.data(), desc_str.size()).Finalize(id.begin());
2411
0
    return id;
2412
0
}
2413
2414
void DescriptorCache::CacheParentExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub)
2415
0
{
2416
0
    m_parent_xpubs[key_exp_pos] = xpub;
2417
0
}
2418
2419
void DescriptorCache::CacheDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, const CExtPubKey& xpub)
2420
0
{
2421
0
    auto& xpubs = m_derived_xpubs[key_exp_pos];
2422
0
    xpubs[der_index] = xpub;
2423
0
}
2424
2425
void DescriptorCache::CacheLastHardenedExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub)
2426
0
{
2427
0
    m_last_hardened_xpubs[key_exp_pos] = xpub;
2428
0
}
2429
2430
bool DescriptorCache::GetCachedParentExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const
2431
0
{
2432
0
    const auto& it = m_parent_xpubs.find(key_exp_pos);
2433
0
    if (it == m_parent_xpubs.end()) return false;
2434
0
    xpub = it->second;
2435
0
    return true;
2436
0
}
2437
2438
bool DescriptorCache::GetCachedDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, CExtPubKey& xpub) const
2439
0
{
2440
0
    const auto& key_exp_it = m_derived_xpubs.find(key_exp_pos);
2441
0
    if (key_exp_it == m_derived_xpubs.end()) return false;
2442
0
    const auto& der_it = key_exp_it->second.find(der_index);
2443
0
    if (der_it == key_exp_it->second.end()) return false;
2444
0
    xpub = der_it->second;
2445
0
    return true;
2446
0
}
2447
2448
bool DescriptorCache::GetCachedLastHardenedExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const
2449
0
{
2450
0
    const auto& it = m_last_hardened_xpubs.find(key_exp_pos);
2451
0
    if (it == m_last_hardened_xpubs.end()) return false;
2452
0
    xpub = it->second;
2453
0
    return true;
2454
0
}
2455
2456
DescriptorCache DescriptorCache::MergeAndDiff(const DescriptorCache& other)
2457
0
{
2458
0
    DescriptorCache diff;
2459
0
    for (const auto& parent_xpub_pair : other.GetCachedParentExtPubKeys()) {
2460
0
        CExtPubKey xpub;
2461
0
        if (GetCachedParentExtPubKey(parent_xpub_pair.first, xpub)) {
2462
0
            if (xpub != parent_xpub_pair.second) {
2463
0
                throw std::runtime_error(std::string(__func__) + ": New cached parent xpub does not match already cached parent xpub");
2464
0
            }
2465
0
            continue;
2466
0
        }
2467
0
        CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second);
2468
0
        diff.CacheParentExtPubKey(parent_xpub_pair.first, parent_xpub_pair.second);
2469
0
    }
2470
0
    for (const auto& derived_xpub_map_pair : other.GetCachedDerivedExtPubKeys()) {
2471
0
        for (const auto& derived_xpub_pair : derived_xpub_map_pair.second) {
2472
0
            CExtPubKey xpub;
2473
0
            if (GetCachedDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, xpub)) {
2474
0
                if (xpub != derived_xpub_pair.second) {
2475
0
                    throw std::runtime_error(std::string(__func__) + ": New cached derived xpub does not match already cached derived xpub");
2476
0
                }
2477
0
                continue;
2478
0
            }
2479
0
            CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second);
2480
0
            diff.CacheDerivedExtPubKey(derived_xpub_map_pair.first, derived_xpub_pair.first, derived_xpub_pair.second);
2481
0
        }
2482
0
    }
2483
0
    for (const auto& lh_xpub_pair : other.GetCachedLastHardenedExtPubKeys()) {
2484
0
        CExtPubKey xpub;
2485
0
        if (GetCachedLastHardenedExtPubKey(lh_xpub_pair.first, xpub)) {
2486
0
            if (xpub != lh_xpub_pair.second) {
2487
0
                throw std::runtime_error(std::string(__func__) + ": New cached last hardened xpub does not match already cached last hardened xpub");
2488
0
            }
2489
0
            continue;
2490
0
        }
2491
0
        CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second);
2492
0
        diff.CacheLastHardenedExtPubKey(lh_xpub_pair.first, lh_xpub_pair.second);
2493
0
    }
2494
0
    return diff;
2495
0
}
2496
2497
ExtPubKeyMap DescriptorCache::GetCachedParentExtPubKeys() const
2498
0
{
2499
0
    return m_parent_xpubs;
2500
0
}
2501
2502
std::unordered_map<uint32_t, ExtPubKeyMap> DescriptorCache::GetCachedDerivedExtPubKeys() const
2503
0
{
2504
0
    return m_derived_xpubs;
2505
0
}
2506
2507
ExtPubKeyMap DescriptorCache::GetCachedLastHardenedExtPubKeys() const
2508
0
{
2509
0
    return m_last_hardened_xpubs;
2510
0
}