/Users/eugenesiegel/btc/bitcoin/src/script/miniscript.h
Line | Count | Source (jump to first uncovered line) |
1 | | // Copyright (c) 2019-present The Bitcoin Core developers |
2 | | // Distributed under the MIT software license, see the accompanying |
3 | | // file COPYING or http://www.opensource.org/licenses/mit-license.php. |
4 | | |
5 | | #ifndef BITCOIN_SCRIPT_MINISCRIPT_H |
6 | | #define BITCOIN_SCRIPT_MINISCRIPT_H |
7 | | |
8 | | #include <algorithm> |
9 | | #include <compare> |
10 | | #include <cstdint> |
11 | | #include <cstdlib> |
12 | | #include <iterator> |
13 | | #include <memory> |
14 | | #include <optional> |
15 | | #include <set> |
16 | | #include <stdexcept> |
17 | | #include <tuple> |
18 | | #include <utility> |
19 | | #include <vector> |
20 | | |
21 | | #include <consensus/consensus.h> |
22 | | #include <policy/policy.h> |
23 | | #include <script/interpreter.h> |
24 | | #include <script/parsing.h> |
25 | | #include <script/script.h> |
26 | | #include <serialize.h> |
27 | | #include <span.h> |
28 | | #include <util/check.h> |
29 | | #include <util/strencodings.h> |
30 | | #include <util/string.h> |
31 | | #include <util/vector.h> |
32 | | |
33 | | namespace miniscript { |
34 | | |
35 | | /** This type encapsulates the miniscript type system properties. |
36 | | * |
37 | | * Every miniscript expression is one of 4 basic types, and additionally has |
38 | | * a number of boolean type properties. |
39 | | * |
40 | | * The basic types are: |
41 | | * - "B" Base: |
42 | | * - Takes its inputs from the top of the stack. |
43 | | * - When satisfied, pushes a nonzero value of up to 4 bytes onto the stack. |
44 | | * - When dissatisfied, pushes a 0 onto the stack. |
45 | | * - This is used for most expressions, and required for the top level one. |
46 | | * - For example: older(n) = <n> OP_CHECKSEQUENCEVERIFY. |
47 | | * - "V" Verify: |
48 | | * - Takes its inputs from the top of the stack. |
49 | | * - When satisfied, pushes nothing. |
50 | | * - Cannot be dissatisfied. |
51 | | * - This can be obtained by adding an OP_VERIFY to a B, modifying the last opcode |
52 | | * of a B to its -VERIFY version (only for OP_CHECKSIG, OP_CHECKSIGVERIFY, |
53 | | * OP_NUMEQUAL and OP_EQUAL), or by combining a V fragment under some conditions. |
54 | | * - For example vc:pk_k(key) = <key> OP_CHECKSIGVERIFY |
55 | | * - "K" Key: |
56 | | * - Takes its inputs from the top of the stack. |
57 | | * - Becomes a B when followed by OP_CHECKSIG. |
58 | | * - Always pushes a public key onto the stack, for which a signature is to be |
59 | | * provided to satisfy the expression. |
60 | | * - For example pk_h(key) = OP_DUP OP_HASH160 <Hash160(key)> OP_EQUALVERIFY |
61 | | * - "W" Wrapped: |
62 | | * - Takes its input from one below the top of the stack. |
63 | | * - When satisfied, pushes a nonzero value (like B) on top of the stack, or one below. |
64 | | * - When dissatisfied, pushes 0 op top of the stack or one below. |
65 | | * - Is always "OP_SWAP [B]" or "OP_TOALTSTACK [B] OP_FROMALTSTACK". |
66 | | * - For example sc:pk_k(key) = OP_SWAP <key> OP_CHECKSIG |
67 | | * |
68 | | * There are type properties that help reasoning about correctness: |
69 | | * - "z" Zero-arg: |
70 | | * - Is known to always consume exactly 0 stack elements. |
71 | | * - For example after(n) = <n> OP_CHECKLOCKTIMEVERIFY |
72 | | * - "o" One-arg: |
73 | | * - Is known to always consume exactly 1 stack element. |
74 | | * - Conflicts with property 'z' |
75 | | * - For example sha256(hash) = OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 <hash> OP_EQUAL |
76 | | * - "n" Nonzero: |
77 | | * - For every way this expression can be satisfied, a satisfaction exists that never needs |
78 | | * a zero top stack element. |
79 | | * - Conflicts with property 'z' and with type 'W'. |
80 | | * - "d" Dissatisfiable: |
81 | | * - There is an easy way to construct a dissatisfaction for this expression. |
82 | | * - Conflicts with type 'V'. |
83 | | * - "u" Unit: |
84 | | * - In case of satisfaction, an exact 1 is put on the stack (rather than just nonzero). |
85 | | * - Conflicts with type 'V'. |
86 | | * |
87 | | * Additional type properties help reasoning about nonmalleability: |
88 | | * - "e" Expression: |
89 | | * - This implies property 'd', but the dissatisfaction is nonmalleable. |
90 | | * - This generally requires 'e' for all subexpressions which are invoked for that |
91 | | * dissatisfaction, and property 'f' for the unexecuted subexpressions in that case. |
92 | | * - Conflicts with type 'V'. |
93 | | * - "f" Forced: |
94 | | * - Dissatisfactions (if any) for this expression always involve at least one signature. |
95 | | * - Is always true for type 'V'. |
96 | | * - "s" Safe: |
97 | | * - Satisfactions for this expression always involve at least one signature. |
98 | | * - "m" Nonmalleable: |
99 | | * - For every way this expression can be satisfied (which may be none), |
100 | | * a nonmalleable satisfaction exists. |
101 | | * - This generally requires 'm' for all subexpressions, and 'e' for all subexpressions |
102 | | * which are dissatisfied when satisfying the parent. |
103 | | * |
104 | | * One type property is an implementation detail: |
105 | | * - "x" Expensive verify: |
106 | | * - Expressions with this property have a script whose last opcode is not EQUAL, CHECKSIG, or CHECKMULTISIG. |
107 | | * - Not having this property means that it can be converted to a V at no cost (by switching to the |
108 | | * -VERIFY version of the last opcode). |
109 | | * |
110 | | * Five more type properties for representing timelock information. Spend paths |
111 | | * in miniscripts containing conflicting timelocks and heightlocks cannot be spent together. |
112 | | * This helps users detect if miniscript does not match the semantic behaviour the |
113 | | * user expects. |
114 | | * - "g" Whether the branch contains a relative time timelock |
115 | | * - "h" Whether the branch contains a relative height timelock |
116 | | * - "i" Whether the branch contains an absolute time timelock |
117 | | * - "j" Whether the branch contains an absolute height timelock |
118 | | * - "k" |
119 | | * - Whether all satisfactions of this expression don't contain a mix of heightlock and timelock |
120 | | * of the same type. |
121 | | * - If the miniscript does not have the "k" property, the miniscript template will not match |
122 | | * the user expectation of the corresponding spending policy. |
123 | | * For each of these properties the subset rule holds: an expression with properties X, Y, and Z, is also |
124 | | * valid in places where an X, a Y, a Z, an XY, ... is expected. |
125 | | */ |
126 | | class Type { |
127 | | //! Internal bitmap of properties (see ""_mst operator for details). |
128 | | uint32_t m_flags; |
129 | | |
130 | | //! Internal constructor. |
131 | 0 | explicit constexpr Type(uint32_t flags) noexcept : m_flags(flags) {} |
132 | | |
133 | | public: |
134 | | //! Construction function used by the ""_mst operator. |
135 | 0 | static consteval Type Make(uint32_t flags) noexcept { return Type(flags); } |
136 | | |
137 | | //! Compute the type with the union of properties. |
138 | 0 | constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); } |
139 | | |
140 | | //! Compute the type with the intersection of properties. |
141 | 0 | constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); } |
142 | | |
143 | | //! Check whether the left hand's properties are superset of the right's (= left is a subtype of right). |
144 | 0 | constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; } |
145 | | |
146 | | //! Comparison operator to enable use in sets/maps (total ordering incompatible with <<). |
147 | 0 | constexpr bool operator<(Type x) const { return m_flags < x.m_flags; } |
148 | | |
149 | | //! Equality operator. |
150 | 0 | constexpr bool operator==(Type x) const { return m_flags == x.m_flags; } |
151 | | |
152 | | //! The empty type if x is false, itself otherwise. |
153 | 0 | constexpr Type If(bool x) const { return Type(x ? m_flags : 0); } |
154 | | }; |
155 | | |
156 | | //! Literal operator to construct Type objects. |
157 | | inline consteval Type operator""_mst(const char* c, size_t l) |
158 | | { |
159 | | Type typ{Type::Make(0)}; |
160 | | |
161 | | for (const char *p = c; p < c + l; p++) { |
162 | | typ = typ | Type::Make( |
163 | | *p == 'B' ? 1 << 0 : // Base type |
164 | | *p == 'V' ? 1 << 1 : // Verify type |
165 | | *p == 'K' ? 1 << 2 : // Key type |
166 | | *p == 'W' ? 1 << 3 : // Wrapped type |
167 | | *p == 'z' ? 1 << 4 : // Zero-arg property |
168 | | *p == 'o' ? 1 << 5 : // One-arg property |
169 | | *p == 'n' ? 1 << 6 : // Nonzero arg property |
170 | | *p == 'd' ? 1 << 7 : // Dissatisfiable property |
171 | | *p == 'u' ? 1 << 8 : // Unit property |
172 | | *p == 'e' ? 1 << 9 : // Expression property |
173 | | *p == 'f' ? 1 << 10 : // Forced property |
174 | | *p == 's' ? 1 << 11 : // Safe property |
175 | | *p == 'm' ? 1 << 12 : // Nonmalleable property |
176 | | *p == 'x' ? 1 << 13 : // Expensive verify |
177 | | *p == 'g' ? 1 << 14 : // older: contains relative time timelock (csv_time) |
178 | | *p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height) |
179 | | *p == 'i' ? 1 << 16 : // after: contains time timelock (cltv_time) |
180 | | *p == 'j' ? 1 << 17 : // after: contains height timelock (cltv_height) |
181 | | *p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks |
182 | | (throw std::logic_error("Unknown character in _mst literal"), 0) |
183 | | ); |
184 | | } |
185 | | |
186 | | return typ; |
187 | | } |
188 | | |
189 | | using Opcode = std::pair<opcodetype, std::vector<unsigned char>>; |
190 | | |
191 | | template<typename Key> struct Node; |
192 | | template<typename Key> using NodeRef = std::unique_ptr<const Node<Key>>; |
193 | | |
194 | | //! Construct a miniscript node as a unique_ptr. |
195 | | template<typename Key, typename... Args> |
196 | 0 | NodeRef<Key> MakeNodeRef(Args&&... args) { return std::make_unique<const Node<Key>>(std::forward<Args>(args)...); } Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentEEEENSt3__110unique_ptrIKNS_4NodeIT_EENS6_14default_deleteISB_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIS1_NS6_9allocatorIS1_EEEEEEENS6_10unique_ptrIKNS_4NodeIT_EENS6_14default_deleteISF_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentERxEEENSt3__110unique_ptrIKNS_4NodeIT_EENS7_14default_deleteISC_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentERNSt3__16vectorIhNS6_9allocatorIhEEEEEEENS6_10unique_ptrIKNS_4NodeIT_EENS6_14default_deleteISG_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIS1_NS6_9allocatorIS1_EEEERKxEEENS6_10unique_ptrIKNS_4NodeIT_EENS6_14default_deleteISH_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS6_10unique_ptrIKNS_4NodeIS1_EENS6_14default_deleteISB_EEEENS6_9allocatorISE_EEEEEEENS8_IKNS9_IT_EENSC_ISK_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckERKNS_17MiniscriptContextERNS_8FragmentENSt3__16vectorINS9_10unique_ptrIKNS_4NodeIS1_EENS9_14default_deleteISE_EEEENS9_9allocatorISH_EEEEEEENSB_IKNSC_IT_EENSF_ISN_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS6_10unique_ptrIKNS_4NodeIS1_EENS6_14default_deleteISB_EEEENS6_9allocatorISE_EEEERxEEENS8_IKNS9_IT_EENSC_ISL_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIhNS6_9allocatorIhEEEEEEENS6_10unique_ptrIKNS_4NodeIT_EENS6_14default_deleteISF_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentERKxEEENSt3__110unique_ptrIKNS_4NodeIT_EENS8_14default_deleteISD_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckERNS_17MiniscriptContextERNS_8FragmentENSt3__16vectorINS8_10unique_ptrIKNS_4NodeIS1_EENS8_14default_deleteISD_EEEENS8_9allocatorISG_EEEENS9_IhNSH_IhEEEERjEEENSA_IKNSB_IT_EENSE_ISP_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI7CPubKeyJNS_8internal10NoDupCheckERNS_17MiniscriptContextERNS_8FragmentENSt3__16vectorIS1_NS8_9allocatorIS1_EEEERjEEENS8_10unique_ptrIKNS_4NodeIT_EENS8_14default_deleteISI_EEEEDpOT0_ Unexecuted instantiation: miniscript.cpp:_ZN10miniscript11MakeNodeRefIN12_GLOBAL__N_119ScriptParserContext3KeyEJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentEEEENSt3__110unique_ptrIKNS_4NodeIT_EENS8_14default_deleteISD_EEEEDpOT0_ Unexecuted instantiation: miniscript.cpp:_ZN10miniscript11MakeNodeRefIN12_GLOBAL__N_119ScriptParserContext3KeyEJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIS3_NS8_9allocatorIS3_EEEEEEENS8_10unique_ptrIKNS_4NodeIT_EENS8_14default_deleteISH_EEEEDpOT0_ Unexecuted instantiation: miniscript.cpp:_ZN10miniscript11MakeNodeRefIN12_GLOBAL__N_119ScriptParserContext3KeyEJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentERxEEENSt3__110unique_ptrIKNS_4NodeIT_EENS9_14default_deleteISE_EEEEDpOT0_ Unexecuted instantiation: miniscript.cpp:_ZN10miniscript11MakeNodeRefIN12_GLOBAL__N_119ScriptParserContext3KeyEJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentERNSt3__16vectorIhNS8_9allocatorIhEEEEEEENS8_10unique_ptrIKNS_4NodeIT_EENS8_14default_deleteISI_EEEEDpOT0_ Unexecuted instantiation: miniscript.cpp:_ZN10miniscript11MakeNodeRefIN12_GLOBAL__N_119ScriptParserContext3KeyEJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIS3_NS8_9allocatorIS3_EEEERKxEEENS8_10unique_ptrIKNS_4NodeIT_EENS8_14default_deleteISJ_EEEEDpOT0_ Unexecuted instantiation: miniscript.cpp:_ZN10miniscript11MakeNodeRefIN12_GLOBAL__N_119ScriptParserContext3KeyEJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS8_10unique_ptrIKNS_4NodeIS3_EENS8_14default_deleteISD_EEEENS8_9allocatorISG_EEEEEEENSA_IKNSB_IT_EENSE_ISM_EEEEDpOT0_ Unexecuted instantiation: miniscript.cpp:_ZN10miniscript11MakeNodeRefIN12_GLOBAL__N_119ScriptParserContext3KeyEJNS_8internal10NoDupCheckERKNS_17MiniscriptContextERNS_8FragmentENSt3__16vectorINSB_10unique_ptrIKNS_4NodeIS3_EENSB_14default_deleteISG_EEEENSB_9allocatorISJ_EEEEEEENSD_IKNSE_IT_EENSH_ISP_EEEEDpOT0_ Unexecuted instantiation: miniscript.cpp:_ZN10miniscript11MakeNodeRefIN12_GLOBAL__N_119ScriptParserContext3KeyEJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS8_10unique_ptrIKNS_4NodeIS3_EENS8_14default_deleteISD_EEEENS8_9allocatorISG_EEEERxEEENSA_IKNSB_IT_EENSE_ISN_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefIjJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentEEEENSt3__110unique_ptrIKNS_4NodeIT_EENS5_14default_deleteISA_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefIjJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS5_10unique_ptrIKNS_4NodeIjEENS5_14default_deleteISA_EEEENS5_9allocatorISD_EEEEEEENS7_IKNS8_IT_EENSB_ISJ_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefIjJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIjNS5_9allocatorIjEEEEEEENS5_10unique_ptrIKNS_4NodeIT_EENS5_14default_deleteISE_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefIjJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIhNS5_9allocatorIhEEEEEEENS5_10unique_ptrIKNS_4NodeIT_EENS5_14default_deleteISE_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefIjJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentERKxEEENSt3__110unique_ptrIKNS_4NodeIT_EENS7_14default_deleteISC_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefIjJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIjNS5_9allocatorIjEEEERKxEEENS5_10unique_ptrIKNS_4NodeIT_EENS5_14default_deleteISG_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefIjJNS_8internal10NoDupCheckERKNS_17MiniscriptContextERNS_8FragmentENSt3__16vectorINS8_10unique_ptrIKNS_4NodeIjEENS8_14default_deleteISD_EEEENS8_9allocatorISG_EEEEEEENSA_IKNSB_IT_EENSE_ISM_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefIjJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS5_10unique_ptrIKNS_4NodeIjEENS5_14default_deleteISA_EEEENS5_9allocatorISD_EEEERxEEENS7_IKNS8_IT_EENSB_ISK_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefIjJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentERxEEENSt3__110unique_ptrIKNS_4NodeIT_EENS6_14default_deleteISB_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefIjJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentERNSt3__16vectorIhNS5_9allocatorIhEEEEEEENS5_10unique_ptrIKNS_4NodeIT_EENS5_14default_deleteISF_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI11XOnlyPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentEEEENSt3__110unique_ptrIKNS_4NodeIT_EENS6_14default_deleteISB_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI11XOnlyPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIS1_NS6_9allocatorIS1_EEEEEEENS6_10unique_ptrIKNS_4NodeIT_EENS6_14default_deleteISF_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI11XOnlyPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentERxEEENSt3__110unique_ptrIKNS_4NodeIT_EENS7_14default_deleteISC_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI11XOnlyPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentERNSt3__16vectorIhNS6_9allocatorIhEEEEEEENS6_10unique_ptrIKNS_4NodeIT_EENS6_14default_deleteISG_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI11XOnlyPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIS1_NS6_9allocatorIS1_EEEERKxEEENS6_10unique_ptrIKNS_4NodeIT_EENS6_14default_deleteISH_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI11XOnlyPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS6_10unique_ptrIKNS_4NodeIS1_EENS6_14default_deleteISB_EEEENS6_9allocatorISE_EEEEEEENS8_IKNS9_IT_EENSC_ISK_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI11XOnlyPubKeyJNS_8internal10NoDupCheckERKNS_17MiniscriptContextERNS_8FragmentENSt3__16vectorINS9_10unique_ptrIKNS_4NodeIS1_EENS9_14default_deleteISE_EEEENS9_9allocatorISH_EEEEEEENSB_IKNSC_IT_EENSF_ISN_EEEEDpOT0_ Unexecuted instantiation: _ZN10miniscript11MakeNodeRefI11XOnlyPubKeyJNS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS6_10unique_ptrIKNS_4NodeIS1_EENS6_14default_deleteISB_EEEENS6_9allocatorISE_EEEERxEEENS8_IKNS9_IT_EENSC_ISL_EEEEDpOT0_ |
197 | | |
198 | | //! The different node types in miniscript. |
199 | | enum class Fragment { |
200 | | JUST_0, //!< OP_0 |
201 | | JUST_1, //!< OP_1 |
202 | | PK_K, //!< [key] |
203 | | PK_H, //!< OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY |
204 | | OLDER, //!< [n] OP_CHECKSEQUENCEVERIFY |
205 | | AFTER, //!< [n] OP_CHECKLOCKTIMEVERIFY |
206 | | SHA256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL |
207 | | HASH256, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL |
208 | | RIPEMD160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL |
209 | | HASH160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL |
210 | | WRAP_A, //!< OP_TOALTSTACK [X] OP_FROMALTSTACK |
211 | | WRAP_S, //!< OP_SWAP [X] |
212 | | WRAP_C, //!< [X] OP_CHECKSIG |
213 | | WRAP_D, //!< OP_DUP OP_IF [X] OP_ENDIF |
214 | | WRAP_V, //!< [X] OP_VERIFY (or -VERIFY version of last opcode in X) |
215 | | WRAP_J, //!< OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF |
216 | | WRAP_N, //!< [X] OP_0NOTEQUAL |
217 | | AND_V, //!< [X] [Y] |
218 | | AND_B, //!< [X] [Y] OP_BOOLAND |
219 | | OR_B, //!< [X] [Y] OP_BOOLOR |
220 | | OR_C, //!< [X] OP_NOTIF [Y] OP_ENDIF |
221 | | OR_D, //!< [X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF |
222 | | OR_I, //!< OP_IF [X] OP_ELSE [Y] OP_ENDIF |
223 | | ANDOR, //!< [X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF |
224 | | THRESH, //!< [X1] ([Xn] OP_ADD)* [k] OP_EQUAL |
225 | | MULTI, //!< [k] [key_n]* [n] OP_CHECKMULTISIG (only available within P2WSH context) |
226 | | MULTI_A, //!< [key_0] OP_CHECKSIG ([key_n] OP_CHECKSIGADD)* [k] OP_NUMEQUAL (only within Tapscript ctx) |
227 | | // AND_N(X,Y) is represented as ANDOR(X,Y,0) |
228 | | // WRAP_T(X) is represented as AND_V(X,1) |
229 | | // WRAP_L(X) is represented as OR_I(0,X) |
230 | | // WRAP_U(X) is represented as OR_I(X,0) |
231 | | }; |
232 | | |
233 | | enum class Availability { |
234 | | NO, |
235 | | YES, |
236 | | MAYBE, |
237 | | }; |
238 | | |
239 | | enum class MiniscriptContext { |
240 | | P2WSH, |
241 | | TAPSCRIPT, |
242 | | }; |
243 | | |
244 | | /** Whether the context Tapscript, ensuring the only other possibility is P2WSH. */ |
245 | | constexpr bool IsTapscript(MiniscriptContext ms_ctx) |
246 | 0 | { |
247 | 0 | switch (ms_ctx) { |
248 | 0 | case MiniscriptContext::P2WSH: return false; |
249 | 0 | case MiniscriptContext::TAPSCRIPT: return true; |
250 | 0 | } |
251 | 0 | assert(false); |
252 | 0 | } |
253 | | |
254 | | namespace internal { |
255 | | |
256 | | //! The maximum size of a witness item for a Miniscript under Tapscript context. (A BIP340 signature with a sighash type byte.) |
257 | | static constexpr uint32_t MAX_TAPMINISCRIPT_STACK_ELEM_SIZE{65}; |
258 | | |
259 | | //! version + nLockTime |
260 | | constexpr uint32_t TX_OVERHEAD{4 + 4}; |
261 | | //! prevout + nSequence + scriptSig |
262 | | constexpr uint32_t TXIN_BYTES_NO_WITNESS{36 + 4 + 1}; |
263 | | //! nValue + script len + OP_0 + pushdata 32. |
264 | | constexpr uint32_t P2WSH_TXOUT_BYTES{8 + 1 + 1 + 33}; |
265 | | //! Data other than the witness in a transaction. Overhead + vin count + one vin + vout count + one vout + segwit marker |
266 | | constexpr uint32_t TX_BODY_LEEWAY_WEIGHT{(TX_OVERHEAD + GetSizeOfCompactSize(1) + TXIN_BYTES_NO_WITNESS + GetSizeOfCompactSize(1) + P2WSH_TXOUT_BYTES) * WITNESS_SCALE_FACTOR + 2}; |
267 | | //! Maximum possible stack size to spend a Taproot output (excluding the script itself). |
268 | | constexpr uint32_t MAX_TAPSCRIPT_SAT_SIZE{GetSizeOfCompactSize(MAX_STACK_SIZE) + (GetSizeOfCompactSize(MAX_TAPMINISCRIPT_STACK_ELEM_SIZE) + MAX_TAPMINISCRIPT_STACK_ELEM_SIZE) * MAX_STACK_SIZE + GetSizeOfCompactSize(TAPROOT_CONTROL_MAX_SIZE) + TAPROOT_CONTROL_MAX_SIZE}; |
269 | | /** The maximum size of a script depending on the context. */ |
270 | | constexpr uint32_t MaxScriptSize(MiniscriptContext ms_ctx) |
271 | 0 | { |
272 | 0 | if (IsTapscript(ms_ctx)) { |
273 | | // Leaf scripts under Tapscript are not explicitly limited in size. They are only implicitly |
274 | | // bounded by the maximum standard size of a spending transaction. Let the maximum script |
275 | | // size conservatively be small enough such that even a maximum sized witness and a reasonably |
276 | | // sized spending transaction can spend an output paying to this script without running into |
277 | | // the maximum standard tx size limit. |
278 | 0 | constexpr auto max_size{MAX_STANDARD_TX_WEIGHT - TX_BODY_LEEWAY_WEIGHT - MAX_TAPSCRIPT_SAT_SIZE}; |
279 | 0 | return max_size - GetSizeOfCompactSize(max_size); |
280 | 0 | } |
281 | 0 | return MAX_STANDARD_P2WSH_SCRIPT_SIZE; |
282 | 0 | } |
283 | | |
284 | | //! Helper function for Node::CalcType. |
285 | | Type ComputeType(Fragment fragment, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx); |
286 | | |
287 | | //! Helper function for Node::CalcScriptLen. |
288 | | size_t ComputeScriptLen(Fragment fragment, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys, MiniscriptContext ms_ctx); |
289 | | |
290 | | //! A helper sanitizer/checker for the output of CalcType. |
291 | | Type SanitizeType(Type x); |
292 | | |
293 | | //! An object representing a sequence of witness stack elements. |
294 | | struct InputStack { |
295 | | /** Whether this stack is valid for its intended purpose (satisfaction or dissatisfaction of a Node). |
296 | | * The MAYBE value is used for size estimation, when keys/preimages may actually be unavailable, |
297 | | * but may be available at signing time. This makes the InputStack structure and signing logic, |
298 | | * filled with dummy signatures/preimages usable for witness size estimation. |
299 | | */ |
300 | | Availability available = Availability::YES; |
301 | | //! Whether this stack contains a digital signature. |
302 | | bool has_sig = false; |
303 | | //! Whether this stack is malleable (can be turned into an equally valid other stack by a third party). |
304 | | bool malleable = false; |
305 | | //! Whether this stack is non-canonical (using a construction known to be unnecessary for satisfaction). |
306 | | //! Note that this flag does not affect the satisfaction algorithm; it is only used for sanity checking. |
307 | | bool non_canon = false; |
308 | | //! Serialized witness size. |
309 | | size_t size = 0; |
310 | | //! Data elements. |
311 | | std::vector<std::vector<unsigned char>> stack; |
312 | | //! Construct an empty stack (valid). |
313 | 0 | InputStack() = default; |
314 | | //! Construct a valid single-element stack (with an element up to 75 bytes). |
315 | 0 | InputStack(std::vector<unsigned char> in) : size(in.size() + 1), stack(Vector(std::move(in))) {} |
316 | | //! Change availability |
317 | | InputStack& SetAvailable(Availability avail); |
318 | | //! Mark this input stack as having a signature. |
319 | | InputStack& SetWithSig(); |
320 | | //! Mark this input stack as non-canonical (known to not be necessary in non-malleable satisfactions). |
321 | | InputStack& SetNonCanon(); |
322 | | //! Mark this input stack as malleable. |
323 | | InputStack& SetMalleable(bool x = true); |
324 | | //! Concatenate two input stacks. |
325 | | friend InputStack operator+(InputStack a, InputStack b); |
326 | | //! Choose between two potential input stacks. |
327 | | friend InputStack operator|(InputStack a, InputStack b); |
328 | | }; |
329 | | |
330 | | /** A stack consisting of a single zero-length element (interpreted as 0 by the script interpreter in numeric context). */ |
331 | | static const auto ZERO = InputStack(std::vector<unsigned char>()); |
332 | | /** A stack consisting of a single malleable 32-byte 0x0000...0000 element (for dissatisfying hash challenges). */ |
333 | | static const auto ZERO32 = InputStack(std::vector<unsigned char>(32, 0)).SetMalleable(); |
334 | | /** A stack consisting of a single 0x01 element (interpreted as 1 by the script interpreted in numeric context). */ |
335 | | static const auto ONE = InputStack(Vector((unsigned char)1)); |
336 | | /** The empty stack. */ |
337 | | static const auto EMPTY = InputStack(); |
338 | | /** A stack representing the lack of any (dis)satisfactions. */ |
339 | | static const auto INVALID = InputStack().SetAvailable(Availability::NO); |
340 | | |
341 | | //! A pair of a satisfaction and a dissatisfaction InputStack. |
342 | | struct InputResult { |
343 | | InputStack nsat, sat; |
344 | | |
345 | | template<typename A, typename B> |
346 | 0 | InputResult(A&& in_nsat, B&& in_sat) : nsat(std::forward<A>(in_nsat)), sat(std::forward<B>(in_sat)) {} Unexecuted instantiation: _ZN10miniscript8internal11InputResultC2IRKNS0_10InputStackERS3_EEOT_OT0_ Unexecuted instantiation: _ZN10miniscript8internal11InputResultC2INS0_10InputStackERS3_EEOT_OT0_ Unexecuted instantiation: _ZN10miniscript8internal11InputResultC2INS0_10InputStackES3_EEOT_OT0_ Unexecuted instantiation: _ZN10miniscript8internal11InputResultC2IRKNS0_10InputStackES5_EEOT_OT0_ Unexecuted instantiation: _ZN10miniscript8internal11InputResultC2IRNS0_10InputStackES3_EEOT_OT0_ Unexecuted instantiation: _ZN10miniscript8internal11InputResultC2IRKNS0_10InputStackES3_EEOT_OT0_ |
347 | | }; |
348 | | |
349 | | //! Class whose objects represent the maximum of a list of integers. |
350 | | template<typename I> |
351 | | struct MaxInt { |
352 | | const bool valid; |
353 | | const I value; |
354 | | |
355 | 0 | MaxInt() : valid(false), value(0) {} |
356 | 0 | MaxInt(I val) : valid(true), value(val) {} |
357 | | |
358 | 0 | friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) { |
359 | 0 | if (!a.valid || !b.valid) return {}; |
360 | 0 | return a.value + b.value; |
361 | 0 | } |
362 | | |
363 | 0 | friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) { |
364 | 0 | if (!a.valid) return b; |
365 | 0 | if (!b.valid) return a; |
366 | 0 | return std::max(a.value, b.value); |
367 | 0 | } |
368 | | }; |
369 | | |
370 | | struct Ops { |
371 | | //! Non-push opcodes. |
372 | | uint32_t count; |
373 | | //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy. |
374 | | MaxInt<uint32_t> sat; |
375 | | //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy. |
376 | | MaxInt<uint32_t> dsat; |
377 | | |
378 | 0 | Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {}; |
379 | | }; |
380 | | |
381 | | /** A data structure to help the calculation of stack size limits. |
382 | | * |
383 | | * Conceptually, every SatInfo object corresponds to a (possibly empty) set of script execution |
384 | | * traces (sequences of opcodes). |
385 | | * - SatInfo{} corresponds to the empty set. |
386 | | * - SatInfo{n, e} corresponds to a single trace whose net effect is removing n elements from the |
387 | | * stack (may be negative for a net increase), and reaches a maximum of e stack elements more |
388 | | * than it ends with. |
389 | | * - operator| is the union operation: (a | b) corresponds to the union of the traces in a and the |
390 | | * traces in b. |
391 | | * - operator+ is the concatenation operator: (a + b) corresponds to the set of traces formed by |
392 | | * concatenating any trace in a with any trace in b. |
393 | | * |
394 | | * Its fields are: |
395 | | * - valid is true if the set is non-empty. |
396 | | * - netdiff (if valid) is the largest difference between stack size at the beginning and at the |
397 | | * end of the script across all traces in the set. |
398 | | * - exec (if valid) is the largest difference between stack size anywhere during execution and at |
399 | | * the end of the script, across all traces in the set (note that this is not necessarily due |
400 | | * to the same trace as the one that resulted in the value for netdiff). |
401 | | * |
402 | | * This allows us to build up stack size limits for any script efficiently, by starting from the |
403 | | * individual opcodes miniscripts correspond to, using concatenation to construct scripts, and |
404 | | * using the union operation to choose between execution branches. Since any top-level script |
405 | | * satisfaction ends with a single stack element, we know that for a full script: |
406 | | * - netdiff+1 is the maximal initial stack size (relevant for P2WSH stack limits). |
407 | | * - exec+1 is the maximal stack size reached during execution (relevant for P2TR stack limits). |
408 | | * |
409 | | * Mathematically, SatInfo forms a semiring: |
410 | | * - operator| is the semiring addition operator, with identity SatInfo{}, and which is commutative |
411 | | * and associative. |
412 | | * - operator+ is the semiring multiplication operator, with identity SatInfo{0}, and which is |
413 | | * associative. |
414 | | * - operator+ is distributive over operator|, so (a + (b | c)) = (a+b | a+c). This means we do not |
415 | | * need to actually materialize all possible full execution traces over the whole script (which |
416 | | * may be exponential in the length of the script); instead we can use the union operation at the |
417 | | * individual subexpression level, and concatenate the result with subexpressions before and |
418 | | * after it. |
419 | | * - It is not a commutative semiring, because a+b can differ from b+a. For example, "OP_1 OP_DROP" |
420 | | * has exec=1, while "OP_DROP OP_1" has exec=0. |
421 | | */ |
422 | | struct SatInfo { |
423 | | //! Whether a canonical satisfaction/dissatisfaction is possible at all. |
424 | | const bool valid; |
425 | | //! How much higher the stack size at start of execution can be compared to at the end. |
426 | | const int32_t netdiff; |
427 | | //! Mow much higher the stack size can be during execution compared to at the end. |
428 | | const int32_t exec; |
429 | | |
430 | | /** Empty script set. */ |
431 | 0 | constexpr SatInfo() noexcept : valid(false), netdiff(0), exec(0) {} |
432 | | |
433 | | /** Script set with a single script in it, with specified netdiff and exec. */ |
434 | | constexpr SatInfo(int32_t in_netdiff, int32_t in_exec) noexcept : |
435 | 0 | valid{true}, netdiff{in_netdiff}, exec{in_exec} {} |
436 | | |
437 | | /** Script set union. */ |
438 | | constexpr friend SatInfo operator|(const SatInfo& a, const SatInfo& b) noexcept |
439 | 0 | { |
440 | | // Union with an empty set is itself. |
441 | 0 | if (!a.valid) return b; |
442 | 0 | if (!b.valid) return a; |
443 | | // Otherwise the netdiff and exec of the union is the maximum of the individual values. |
444 | 0 | return {std::max(a.netdiff, b.netdiff), std::max(a.exec, b.exec)}; |
445 | 0 | } |
446 | | |
447 | | /** Script set concatenation. */ |
448 | | constexpr friend SatInfo operator+(const SatInfo& a, const SatInfo& b) noexcept |
449 | 0 | { |
450 | | // Concatenation with an empty set yields an empty set. |
451 | 0 | if (!a.valid || !b.valid) return {}; |
452 | | // Otherwise, the maximum stack size difference for the combined scripts is the sum of the |
453 | | // netdiffs, and the maximum stack size difference anywhere is either b.exec (if the |
454 | | // maximum occurred in b) or b.netdiff+a.exec (if the maximum occurred in a). |
455 | 0 | return {a.netdiff + b.netdiff, std::max(b.exec, b.netdiff + a.exec)}; |
456 | 0 | } |
457 | | |
458 | | /** The empty script. */ |
459 | 0 | static constexpr SatInfo Empty() noexcept { return {0, 0}; } |
460 | | /** A script consisting of a single push opcode. */ |
461 | 0 | static constexpr SatInfo Push() noexcept { return {-1, 0}; } |
462 | | /** A script consisting of a single hash opcode. */ |
463 | 0 | static constexpr SatInfo Hash() noexcept { return {0, 0}; } |
464 | | /** A script consisting of just a repurposed nop (OP_CHECKLOCKTIMEVERIFY, OP_CHECKSEQUENCEVERIFY). */ |
465 | 0 | static constexpr SatInfo Nop() noexcept { return {0, 0}; } |
466 | | /** A script consisting of just OP_IF or OP_NOTIF. Note that OP_ELSE and OP_ENDIF have no stack effect. */ |
467 | 0 | static constexpr SatInfo If() noexcept { return {1, 1}; } |
468 | | /** A script consisting of just a binary operator (OP_BOOLAND, OP_BOOLOR, OP_ADD). */ |
469 | 0 | static constexpr SatInfo BinaryOp() noexcept { return {1, 1}; } |
470 | | |
471 | | // Scripts for specific individual opcodes. |
472 | 0 | static constexpr SatInfo OP_DUP() noexcept { return {-1, 0}; } |
473 | 0 | static constexpr SatInfo OP_IFDUP(bool nonzero) noexcept { return {nonzero ? -1 : 0, 0}; } |
474 | 0 | static constexpr SatInfo OP_EQUALVERIFY() noexcept { return {2, 2}; } |
475 | 0 | static constexpr SatInfo OP_EQUAL() noexcept { return {1, 1}; } |
476 | 0 | static constexpr SatInfo OP_SIZE() noexcept { return {-1, 0}; } |
477 | 0 | static constexpr SatInfo OP_CHECKSIG() noexcept { return {1, 1}; } |
478 | 0 | static constexpr SatInfo OP_0NOTEQUAL() noexcept { return {0, 0}; } |
479 | 0 | static constexpr SatInfo OP_VERIFY() noexcept { return {1, 1}; } |
480 | | }; |
481 | | |
482 | | struct StackSize { |
483 | | const SatInfo sat, dsat; |
484 | | |
485 | 0 | constexpr StackSize(SatInfo in_sat, SatInfo in_dsat) noexcept : sat(in_sat), dsat(in_dsat) {}; |
486 | 0 | constexpr StackSize(SatInfo in_both) noexcept : sat(in_both), dsat(in_both) {}; |
487 | | }; |
488 | | |
489 | | struct WitnessSize { |
490 | | //! Maximum witness size to satisfy; |
491 | | MaxInt<uint32_t> sat; |
492 | | //! Maximum witness size to dissatisfy; |
493 | | MaxInt<uint32_t> dsat; |
494 | | |
495 | 0 | WitnessSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {}; |
496 | | }; |
497 | | |
498 | | struct NoDupCheck {}; |
499 | | |
500 | | } // namespace internal |
501 | | |
502 | | //! A node in a miniscript expression. |
503 | | template<typename Key> |
504 | | struct Node { |
505 | | //! What node type this node is. |
506 | | const Fragment fragment; |
507 | | //! The k parameter (time for OLDER/AFTER, threshold for THRESH(_M)) |
508 | | const uint32_t k = 0; |
509 | | //! The keys used by this expression (only for PK_K/PK_H/MULTI) |
510 | | const std::vector<Key> keys; |
511 | | //! The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD10). |
512 | | const std::vector<unsigned char> data; |
513 | | //! Subexpressions (for WRAP_*/AND_*/OR_*/ANDOR/THRESH) |
514 | | mutable std::vector<NodeRef<Key>> subs; |
515 | | //! The Script context for this node. Either P2WSH or Tapscript. |
516 | | const MiniscriptContext m_script_ctx; |
517 | | |
518 | | /* Destroy the shared pointers iteratively to avoid a stack-overflow due to recursive calls |
519 | | * to the subs' destructors. */ |
520 | 0 | ~Node() { |
521 | 0 | while (!subs.empty()) { |
522 | 0 | auto node = std::move(subs.back()); |
523 | 0 | subs.pop_back(); |
524 | 0 | while (!node->subs.empty()) { |
525 | 0 | subs.push_back(std::move(node->subs.back())); |
526 | 0 | node->subs.pop_back(); |
527 | 0 | } |
528 | 0 | } |
529 | 0 | } Unexecuted instantiation: _ZN10miniscript4NodeI7CPubKeyED2Ev Unexecuted instantiation: miniscript.cpp:_ZN10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEED2Ev Unexecuted instantiation: _ZN10miniscript4NodeIjED2Ev Unexecuted instantiation: _ZN10miniscript4NodeI11XOnlyPubKeyED2Ev |
530 | | |
531 | | NodeRef<Key> Clone() const |
532 | 0 | { |
533 | | // Use TreeEval() to avoid a stack-overflow due to recursion |
534 | 0 | auto upfn = [](const Node& node, std::span<NodeRef<Key>> children) { |
535 | 0 | std::vector<NodeRef<Key>> new_subs; |
536 | 0 | for (auto child = children.begin(); child != children.end(); ++child) { |
537 | 0 | new_subs.emplace_back(std::move(*child)); |
538 | 0 | } |
539 | | // std::make_unique (and therefore MakeNodeRef) doesn't work on private constructors |
540 | 0 | return std::unique_ptr<Node>{new Node{internal::NoDupCheck{}, node.m_script_ctx, node.fragment, std::move(new_subs), node.keys, node.data, node.k}}; |
541 | 0 | }; |
542 | 0 | return TreeEval<NodeRef<Key>>(upfn); |
543 | 0 | } |
544 | | |
545 | | private: |
546 | | //! Cached ops counts. |
547 | | const internal::Ops ops; |
548 | | //! Cached stack size bounds. |
549 | | const internal::StackSize ss; |
550 | | //! Cached witness size bounds. |
551 | | const internal::WitnessSize ws; |
552 | | //! Cached expression type (computed by CalcType and fed through SanitizeType). |
553 | | const Type typ; |
554 | | //! Cached script length (computed by CalcScriptLen). |
555 | | const size_t scriptlen; |
556 | | //! Whether a public key appears more than once in this node. This value is initialized |
557 | | //! by all constructors except the NoDupCheck ones. The NoDupCheck ones skip the |
558 | | //! computation, requiring it to be done manually by invoking DuplicateKeyCheck(). |
559 | | //! DuplicateKeyCheck(), or a non-NoDupCheck constructor, will compute has_duplicate_keys |
560 | | //! for all subnodes as well. |
561 | | mutable std::optional<bool> has_duplicate_keys; |
562 | | |
563 | | // Constructor which takes all of the data that a Node could possibly contain. |
564 | | // This is kept private as no valid fragment has all of these arguments. |
565 | | // Only used by Clone() |
566 | | Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, std::vector<unsigned char> arg, uint32_t val) |
567 | 0 | : fragment(nt), k(val), keys(key), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} |
568 | | |
569 | | //! Compute the length of the script for this miniscript (including children). |
570 | 0 | size_t CalcScriptLen() const { |
571 | 0 | size_t subsize = 0; |
572 | 0 | for (const auto& sub : subs) { |
573 | 0 | subsize += sub->ScriptSize(); |
574 | 0 | } |
575 | 0 | static constexpr auto NONE_MST{""_mst}; |
576 | 0 | Type sub0type = subs.size() > 0 ? subs[0]->GetType() : NONE_MST; |
577 | 0 | return internal::ComputeScriptLen(fragment, sub0type, subsize, k, subs.size(), keys.size(), m_script_ctx); |
578 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE13CalcScriptLenEv Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE13CalcScriptLenEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE13CalcScriptLenEv Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE13CalcScriptLenEv |
579 | | |
580 | | /* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls. |
581 | | * |
582 | | * The algorithm is defined by two functions: downfn and upfn. Conceptually, the |
583 | | * result can be thought of as first using downfn to compute a "state" for each node, |
584 | | * from the root down to the leaves. Then upfn is used to compute a "result" for each |
585 | | * node, from the leaves back up to the root, which is then returned. In the actual |
586 | | * implementation, both functions are invoked in an interleaved fashion, performing a |
587 | | * depth-first traversal of the tree. |
588 | | * |
589 | | * In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn): |
590 | | * - root is the state of the root node, of type State. |
591 | | * - downfn is a callable (State&, const Node&, size_t) -> State, which given a |
592 | | * node, its state, and an index of one of its children, computes the state of that |
593 | | * child. It can modify the state. Children of a given node will have downfn() |
594 | | * called in order. |
595 | | * - upfn is a callable (State&&, const Node&, std::span<Result>) -> std::optional<Result>, |
596 | | * which given a node, its state, and a span of the results of its children, |
597 | | * computes the result of the node. If std::nullopt is returned by upfn, |
598 | | * TreeEvalMaybe() immediately returns std::nullopt. |
599 | | * The return value of TreeEvalMaybe is the result of the root node. |
600 | | * |
601 | | * Result type cannot be bool due to the std::vector<bool> specialization. |
602 | | */ |
603 | | template<typename Result, typename State, typename DownFn, typename UpFn> |
604 | | std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const |
605 | 0 | { |
606 | | /** Entries of the explicit stack tracked in this algorithm. */ |
607 | 0 | struct StackElem |
608 | 0 | { |
609 | 0 | const Node& node; //!< The node being evaluated. |
610 | 0 | size_t expanded; //!< How many children of this node have been expanded. |
611 | 0 | State state; //!< The state for that node. |
612 | |
|
613 | 0 | StackElem(const Node& node_, size_t exp_, State&& state_) : |
614 | 0 | node(node_), expanded(exp_), state(std::move(state_)) {} Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeI7CScriptbZNKS2_8ToScriptIN12_GLOBAL__N_113ParserContextEEES4_RKT_EUlbRKS2_mE_ZNKS2_8TreeEvalIS4_bRSD_ZNKS5_IS7_EES4_SA_EUlbSC_NSt3__14spanIS4_Lm18446744073709551615EEEE_EES8_T0_OT1_T2_EUlObSC_SI_E_EENSG_8optionalIS8_EESK_SL_SN_EN9StackElemC2ESC_mSO_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckIN12_GLOBAL__N_113ParserContextEEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS2_8TreeEvalISH_ZNKS7_IS9_EEvSC_EUlRKS2_NS4_4spanISH_Lm18446744073709551615EEEE_EESA_T0_E10DummyStateZNKSI_ISH_SN_EESA_SO_EUlSP_SK_mE_ZNKSI_ISH_SN_EESA_SO_EUlSP_SK_SM_E_EENS5_ISA_EESO_T1_T2_EN9StackElemC2ESK_mOSP_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINS_8internal11InputResultEZNKS2_8TreeEvalIS5_ZNKS2_12ProduceInputIN12_GLOBAL__N_116SatisfierContextEEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EESA_T0_E10DummyStateZNKS6_IS5_SI_EESA_SJ_EUlSK_SE_mE_ZNKS6_IS5_SI_EESA_SJ_EUlSK_SE_SH_E_EENSF_8optionalISA_EESJ_T1_T2_EN9StackElemC2ESE_mOSK_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeIiZNKS2_8TreeEvalIiZNKS2_13IsSatisfiableIZN12_GLOBAL__N_18TestNodeENS_17MiniscriptContextERKNSt3__110unique_ptrIKS2_NS8_14default_deleteISA_EEEER18FuzzedDataProviderE3$_0EEbT_EUlRSA_NS8_4spanIiLm18446744073709551615EEEE_EESJ_T0_E10DummyStateZNKS4_IiSN_EESJ_SO_EUlSP_SK_mE_ZNKS4_IiSN_EESJ_SO_EUlSP_SK_SM_E_EENS8_8optionalISJ_EESO_T1_T2_EN9StackElemC2ESK_mOSP_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINSt3__112basic_stringIcNS4_11char_traitsIcEENS4_9allocatorIcEEEEbZNKS2_8ToStringIN12_GLOBAL__N_113ParserContextEEENS4_8optionalISA_EERKT_EUlbRKS2_mE_ZNKSB_ISD_EESF_SI_EUlbSK_NS4_4spanISA_Lm18446744073709551615EEEE_EENSE_ISG_EET0_T1_T2_EN9StackElemC2ESK_mOb Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckIN12_GLOBAL__N_113KeyComparatorEEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS2_8TreeEvalISH_ZNKS7_IS9_EEvSC_EUlRKS2_NS4_4spanISH_Lm18446744073709551615EEEE_EESA_T0_E10DummyStateZNKSI_ISH_SN_EESA_SO_EUlSP_SK_mE_ZNKSI_ISH_SN_EESA_SO_EUlSP_SK_SM_E_EENS5_ISA_EESO_T1_T2_EN9StackElemC2ESK_mOSP_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE13TreeEvalMaybeINSt3__18optionalINS6_3setIS3_ZNKS4_17DuplicateKeyCheckIS2_EEvRKT_E4CompNS6_9allocatorIS3_EEEEEEZNKS4_8TreeEvalISH_ZNKS9_IS2_EEvSC_EUlRKS4_NS6_4spanISH_Lm18446744073709551615EEEE_EESA_T0_E10DummyStateZNKSI_ISH_SN_EESA_SO_EUlSP_SK_mE_ZNKSI_ISH_SN_EESA_SO_EUlSP_SK_SM_E_EENS7_ISA_EESO_T1_T2_EN9StackElemC2ESK_mOSP_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE13TreeEvalMaybeI7CScriptbZNKS4_8ToScriptIS2_EES6_RKT_EUlbRKS4_mE_ZNKS4_8TreeEvalIS6_bRSD_ZNKS7_IS2_EES6_SA_EUlbSC_NSt3__14spanIS6_Lm18446744073709551615EEEE_EES8_T0_OT1_T2_EUlObSC_SI_E_EENSG_8optionalIS8_EESK_SL_SN_EN9StackElemC2ESC_mSO_ Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE13TreeEvalMaybeINSt3__18optionalINS3_3setIjZNKS1_17DuplicateKeyCheckIN12_GLOBAL__N_19KeyParserEEEvRKT_E4CompNS3_9allocatorIjEEEEEEZNKS1_8TreeEvalISG_ZNKS6_IS8_EEvSB_EUlRKS1_NS3_4spanISG_Lm18446744073709551615EEEE_EES9_T0_E10DummyStateZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_mE_ZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_SL_E_EENS4_IS9_EESN_T1_T2_EN9StackElemC2ESJ_mOSO_ Unexecuted instantiation: _ZZNK10miniscript4NodeIjE13TreeEvalMaybeIPKS1_ZNKS1_8TreeEvalIS4_ZNKS1_13FindInsaneSubEvEUlRS3_NSt3__14spanIS4_Lm18446744073709551615EEEE_EET_T0_E10DummyStateZNKS5_IS4_SA_EESB_SC_EUlSD_S6_mE_ZNKS5_IS4_SA_EESB_SC_EUlSD_S6_S9_E_EENS7_8optionalISB_EESC_T1_T2_EN9StackElemC2ES6_mOSD_ Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE13TreeEvalMaybeINSt3__112basic_stringIcNS3_11char_traitsIcEENS3_9allocatorIcEEEEbZNKS1_8ToStringIN12_GLOBAL__N_19KeyParserEEENS3_8optionalIS9_EERKT_EUlbRKS1_mE_ZNKSA_ISC_EESE_SH_EUlbSJ_NS3_4spanIS9_Lm18446744073709551615EEEE_EENSD_ISF_EET0_T1_T2_EN9StackElemC2ESJ_mOb Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE13TreeEvalMaybeI7CScriptbZNKS1_8ToScriptIN12_GLOBAL__N_111ScriptMakerEEES3_RKT_EUlbRKS1_mE_ZNKS1_8TreeEvalIS3_bRSC_ZNKS4_IS6_EES3_S9_EUlbSB_NSt3__14spanIS3_Lm18446744073709551615EEEE_EES7_T0_OT1_T2_EUlObSB_SH_E_EENSF_8optionalIS7_EESJ_SK_SM_EN9StackElemC2ESB_mSN_ Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE13TreeEvalMaybeINSt3__112basic_stringIcNS3_11char_traitsIcEENS3_9allocatorIcEEEEbZNKS1_8ToStringIN12_GLOBAL__N_111StringMakerEEENS3_8optionalIS9_EERKT_EUlbRKS1_mE_ZNKSA_ISC_EESE_SH_EUlbSJ_NS3_4spanIS9_Lm18446744073709551615EEEE_EENSD_ISF_EET0_T1_T2_EN9StackElemC2ESJ_mOb Unexecuted instantiation: _ZZNK10miniscript4NodeIjE13TreeEvalMaybeINSt3__110unique_ptrIKS1_NS3_14default_deleteIS5_EEEEZNKS1_8TreeEvalIS8_ZNKS1_5CloneEvEUlRS5_NS3_4spanIS8_Lm18446744073709551615EEEE_EET_T0_E10DummyStateZNKS9_IS8_SD_EESE_SF_EUlSG_SA_mE_ZNKS9_IS8_SD_EESE_SF_EUlSG_SA_SC_E_EENS3_8optionalISE_EESF_T1_T2_EN9StackElemC2ESA_mOSG_ Unexecuted instantiation: _ZZNK10miniscript4NodeI11XOnlyPubKeyE13TreeEvalMaybeINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckI12TapSatisfierEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS2_8TreeEvalISG_ZNKS7_IS8_EEvSB_EUlRKS2_NS4_4spanISG_Lm18446744073709551615EEEE_EES9_T0_E10DummyStateZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_mE_ZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_SL_E_EENS5_IS9_EESN_T1_T2_EN9StackElemC2ESJ_mOSO_ Unexecuted instantiation: _ZZNK10miniscript4NodeI11XOnlyPubKeyE13TreeEvalMaybeINS_8internal11InputResultEZNKS2_8TreeEvalIS5_ZNKS2_12ProduceInputI12TapSatisfierEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES9_T0_E10DummyStateZNKS6_IS5_SH_EES9_SI_EUlSJ_SD_mE_ZNKS6_IS5_SH_EES9_SI_EUlSJ_SD_SG_E_EENSE_8optionalIS9_EESI_T1_T2_EN9StackElemC2ESD_mOSJ_ Unexecuted instantiation: _ZZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckI12WshSatisfierEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS2_8TreeEvalISG_ZNKS7_IS8_EEvSB_EUlRKS2_NS4_4spanISG_Lm18446744073709551615EEEE_EES9_T0_E10DummyStateZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_mE_ZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_SL_E_EENS5_IS9_EESN_T1_T2_EN9StackElemC2ESJ_mOSO_ Unexecuted instantiation: _ZZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINS_8internal11InputResultEZNKS2_8TreeEvalIS5_ZNKS2_12ProduceInputI12WshSatisfierEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES9_T0_E10DummyStateZNKS6_IS5_SH_EES9_SI_EUlSJ_SD_mE_ZNKS6_IS5_SH_EES9_SI_EUlSJ_SD_SG_E_EENSE_8optionalIS9_EESI_T1_T2_EN9StackElemC2ESD_mOSJ_ |
615 | 0 | }; |
616 | | /* Stack of tree nodes being explored. */ |
617 | 0 | std::vector<StackElem> stack; |
618 | | /* Results of subtrees so far. Their order and mapping to tree nodes |
619 | | * is implicitly defined by stack. */ |
620 | 0 | std::vector<Result> results; |
621 | 0 | stack.emplace_back(*this, 0, std::move(root_state)); |
622 | | |
623 | | /* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F). |
624 | | * State variables are omitted for simplicity. |
625 | | * |
626 | | * First: stack=[(A,0)] results=[] |
627 | | * stack=[(A,1),(B,0)] results=[] |
628 | | * stack=[(A,1)] results=[B] |
629 | | * stack=[(A,2),(C,0)] results=[B] |
630 | | * stack=[(A,2),(C,1),(D,0)] results=[B] |
631 | | * stack=[(A,2),(C,1)] results=[B,D] |
632 | | * stack=[(A,2),(C,2),(E,0)] results=[B,D] |
633 | | * stack=[(A,2),(C,2)] results=[B,D,E] |
634 | | * stack=[(A,2)] results=[B,C] |
635 | | * stack=[(A,3),(F,0)] results=[B,C] |
636 | | * stack=[(A,3)] results=[B,C,F] |
637 | | * Final: stack=[] results=[A] |
638 | | */ |
639 | 0 | while (stack.size()) { |
640 | 0 | const Node& node = stack.back().node; |
641 | 0 | if (stack.back().expanded < node.subs.size()) { |
642 | | /* We encounter a tree node with at least one unexpanded child. |
643 | | * Expand it. By the time we hit this node again, the result of |
644 | | * that child (and all earlier children) will be at the end of `results`. */ |
645 | 0 | size_t child_index = stack.back().expanded++; |
646 | 0 | State child_state = downfn(stack.back().state, node, child_index); |
647 | 0 | stack.emplace_back(*node.subs[child_index], 0, std::move(child_state)); |
648 | 0 | continue; |
649 | 0 | } |
650 | | // Invoke upfn with the last node.subs.size() elements of results as input. |
651 | 0 | assert(results.size() >= node.subs.size()); |
652 | 0 | std::optional<Result> result{upfn(std::move(stack.back().state), node, |
653 | 0 | std::span<Result>{results}.last(node.subs.size()))}; |
654 | | // If evaluation returns std::nullopt, abort immediately. |
655 | 0 | if (!result) return {}; |
656 | | // Replace the last node.subs.size() elements of results with the new result. |
657 | 0 | results.erase(results.end() - node.subs.size(), results.end()); |
658 | 0 | results.push_back(std::move(*result)); |
659 | 0 | stack.pop_back(); |
660 | 0 | } |
661 | | // The final remaining results element is the root result, return it. |
662 | 0 | assert(results.size() >= 1); |
663 | 0 | CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(results.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
664 | 0 | return std::move(results[0]); |
665 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeI7CScriptbZNKS2_8ToScriptIN12_GLOBAL__N_113ParserContextEEES4_RKT_EUlbRKS2_mE_ZNKS2_8TreeEvalIS4_bRSD_ZNKS5_IS7_EES4_SA_EUlbSC_NSt3__14spanIS4_Lm18446744073709551615EEEE_EES8_T0_OT1_T2_EUlObSC_SI_E_EENSG_8optionalIS8_EESK_SL_SN_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckIN12_GLOBAL__N_113ParserContextEEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS2_8TreeEvalISH_ZNKS7_IS9_EEvSC_EUlRKS2_NS4_4spanISH_Lm18446744073709551615EEEE_EESA_T0_E10DummyStateZNKSI_ISH_SN_EESA_SO_EUlSP_SK_mE_ZNKSI_ISH_SN_EESA_SO_EUlSP_SK_SM_E_EENS5_ISA_EESO_T1_T2_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINS_8internal11InputResultEZNKS2_8TreeEvalIS5_ZNKS2_12ProduceInputIN12_GLOBAL__N_116SatisfierContextEEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EESA_T0_E10DummyStateZNKS6_IS5_SI_EESA_SJ_EUlSK_SE_mE_ZNKS6_IS5_SI_EESA_SJ_EUlSK_SE_SH_E_EENSF_8optionalISA_EESJ_T1_T2_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeIiZNKS2_8TreeEvalIiZNKS2_13IsSatisfiableIZN12_GLOBAL__N_18TestNodeENS_17MiniscriptContextERKNSt3__110unique_ptrIKS2_NS8_14default_deleteISA_EEEER18FuzzedDataProviderE3$_0EEbT_EUlRSA_NS8_4spanIiLm18446744073709551615EEEE_EESJ_T0_E10DummyStateZNKS4_IiSN_EESJ_SO_EUlSP_SK_mE_ZNKS4_IiSN_EESJ_SO_EUlSP_SK_SM_E_EENS8_8optionalISJ_EESO_T1_T2_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINSt3__112basic_stringIcNS4_11char_traitsIcEENS4_9allocatorIcEEEEbZNKS2_8ToStringIN12_GLOBAL__N_113ParserContextEEENS4_8optionalISA_EERKT_EUlbRKS2_mE_ZNKSB_ISD_EESF_SI_EUlbSK_NS4_4spanISA_Lm18446744073709551615EEEE_EENSE_ISG_EET0_T1_T2_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckIN12_GLOBAL__N_113KeyComparatorEEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS2_8TreeEvalISH_ZNKS7_IS9_EEvSC_EUlRKS2_NS4_4spanISH_Lm18446744073709551615EEEE_EESA_T0_E10DummyStateZNKSI_ISH_SN_EESA_SO_EUlSP_SK_mE_ZNKSI_ISH_SN_EESA_SO_EUlSP_SK_SM_E_EENS5_ISA_EESO_T1_T2_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE13TreeEvalMaybeINSt3__18optionalINS6_3setIS3_ZNKS4_17DuplicateKeyCheckIS2_EEvRKT_E4CompNS6_9allocatorIS3_EEEEEEZNKS4_8TreeEvalISH_ZNKS9_IS2_EEvSC_EUlRKS4_NS6_4spanISH_Lm18446744073709551615EEEE_EESA_T0_E10DummyStateZNKSI_ISH_SN_EESA_SO_EUlSP_SK_mE_ZNKSI_ISH_SN_EESA_SO_EUlSP_SK_SM_E_EENS7_ISA_EESO_T1_T2_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE13TreeEvalMaybeI7CScriptbZNKS4_8ToScriptIS2_EES6_RKT_EUlbRKS4_mE_ZNKS4_8TreeEvalIS6_bRSD_ZNKS7_IS2_EES6_SA_EUlbSC_NSt3__14spanIS6_Lm18446744073709551615EEEE_EES8_T0_OT1_T2_EUlObSC_SI_E_EENSG_8optionalIS8_EESK_SL_SN_ Unexecuted instantiation: descriptor.cpp:_ZNK10miniscript4NodeIjE13TreeEvalMaybeINSt3__18optionalINS3_3setIjZNKS1_17DuplicateKeyCheckIN12_GLOBAL__N_19KeyParserEEEvRKT_E4CompNS3_9allocatorIjEEEEEEZNKS1_8TreeEvalISG_ZNKS6_IS8_EEvSB_EUlRKS1_NS3_4spanISG_Lm18446744073709551615EEEE_EES9_T0_E10DummyStateZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_mE_ZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_SL_E_EENS4_IS9_EESN_T1_T2_ Unexecuted instantiation: _ZNK10miniscript4NodeIjE13TreeEvalMaybeIPKS1_ZNKS1_8TreeEvalIS4_ZNKS1_13FindInsaneSubEvEUlRS3_NSt3__14spanIS4_Lm18446744073709551615EEEE_EET_T0_E10DummyStateZNKS5_IS4_SA_EESB_SC_EUlSD_S6_mE_ZNKS5_IS4_SA_EESB_SC_EUlSD_S6_S9_E_EENS7_8optionalISB_EESC_T1_T2_ Unexecuted instantiation: descriptor.cpp:_ZNK10miniscript4NodeIjE13TreeEvalMaybeINSt3__112basic_stringIcNS3_11char_traitsIcEENS3_9allocatorIcEEEEbZNKS1_8ToStringIN12_GLOBAL__N_19KeyParserEEENS3_8optionalIS9_EERKT_EUlbRKS1_mE_ZNKSA_ISC_EESE_SH_EUlbSJ_NS3_4spanIS9_Lm18446744073709551615EEEE_EENSD_ISF_EET0_T1_T2_ Unexecuted instantiation: descriptor.cpp:_ZNK10miniscript4NodeIjE13TreeEvalMaybeI7CScriptbZNKS1_8ToScriptIN12_GLOBAL__N_111ScriptMakerEEES3_RKT_EUlbRKS1_mE_ZNKS1_8TreeEvalIS3_bRSC_ZNKS4_IS6_EES3_S9_EUlbSB_NSt3__14spanIS3_Lm18446744073709551615EEEE_EES7_T0_OT1_T2_EUlObSB_SH_E_EENSF_8optionalIS7_EESJ_SK_SM_ Unexecuted instantiation: descriptor.cpp:_ZNK10miniscript4NodeIjE13TreeEvalMaybeINSt3__112basic_stringIcNS3_11char_traitsIcEENS3_9allocatorIcEEEEbZNKS1_8ToStringIN12_GLOBAL__N_111StringMakerEEENS3_8optionalIS9_EERKT_EUlbRKS1_mE_ZNKSA_ISC_EESE_SH_EUlbSJ_NS3_4spanIS9_Lm18446744073709551615EEEE_EENSD_ISF_EET0_T1_T2_ Unexecuted instantiation: _ZNK10miniscript4NodeIjE13TreeEvalMaybeINSt3__110unique_ptrIKS1_NS3_14default_deleteIS5_EEEEZNKS1_8TreeEvalIS8_ZNKS1_5CloneEvEUlRS5_NS3_4spanIS8_Lm18446744073709551615EEEE_EET_T0_E10DummyStateZNKS9_IS8_SD_EESE_SF_EUlSG_SA_mE_ZNKS9_IS8_SD_EESE_SF_EUlSG_SA_SC_E_EENS3_8optionalISE_EESF_T1_T2_ Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE13TreeEvalMaybeINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckI12TapSatisfierEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS2_8TreeEvalISG_ZNKS7_IS8_EEvSB_EUlRKS2_NS4_4spanISG_Lm18446744073709551615EEEE_EES9_T0_E10DummyStateZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_mE_ZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_SL_E_EENS5_IS9_EESN_T1_T2_ Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE13TreeEvalMaybeINS_8internal11InputResultEZNKS2_8TreeEvalIS5_ZNKS2_12ProduceInputI12TapSatisfierEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES9_T0_E10DummyStateZNKS6_IS5_SH_EES9_SI_EUlSJ_SD_mE_ZNKS6_IS5_SH_EES9_SI_EUlSJ_SD_SG_E_EENSE_8optionalIS9_EESI_T1_T2_ Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckI12WshSatisfierEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS2_8TreeEvalISG_ZNKS7_IS8_EEvSB_EUlRKS2_NS4_4spanISG_Lm18446744073709551615EEEE_EES9_T0_E10DummyStateZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_mE_ZNKSH_ISG_SM_EES9_SN_EUlSO_SJ_SL_E_EENS5_IS9_EESN_T1_T2_ Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE13TreeEvalMaybeINS_8internal11InputResultEZNKS2_8TreeEvalIS5_ZNKS2_12ProduceInputI12WshSatisfierEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES9_T0_E10DummyStateZNKS6_IS5_SH_EES9_SI_EUlSJ_SD_mE_ZNKS6_IS5_SH_EES9_SI_EUlSJ_SD_SG_E_EENSE_8optionalIS9_EESI_T1_T2_ |
666 | | |
667 | | /** Like TreeEvalMaybe, but without downfn or State type. |
668 | | * upfn takes (const Node&, std::span<Result>) and returns std::optional<Result>. */ |
669 | | template<typename Result, typename UpFn> |
670 | | std::optional<Result> TreeEvalMaybe(UpFn upfn) const |
671 | | { |
672 | | struct DummyState {}; |
673 | | return TreeEvalMaybe<Result>(DummyState{}, |
674 | | [](DummyState, const Node&, size_t) { return DummyState{}; }, |
675 | | [&upfn](DummyState, const Node& node, std::span<Result> subs) { |
676 | | return upfn(node, subs); |
677 | | } |
678 | | ); |
679 | | } |
680 | | |
681 | | /** Like TreeEvalMaybe, but always produces a result. upfn must return Result. */ |
682 | | template<typename Result, typename State, typename DownFn, typename UpFn> |
683 | | Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const |
684 | 0 | { |
685 | | // Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then |
686 | | // unconditionally dereference the result (it cannot be std::nullopt). |
687 | 0 | return std::move(*TreeEvalMaybe<Result>(std::move(root_state), |
688 | 0 | std::forward<DownFn>(downfn), |
689 | 0 | [&upfn](State&& state, const Node& node, std::span<Result> subs) { |
690 | 0 | Result res{upfn(std::move(state), node, subs)}; |
691 | 0 | return std::optional<Result>(std::move(res)); |
692 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalI7CScriptbRZNKS2_8ToScriptIN12_GLOBAL__N_113ParserContextEEES4_RKT_EUlbRKS2_mE_ZNKS5_IS7_EES4_SA_EUlbSC_NSt3__14spanIS4_Lm18446744073709551615EEEE_EES8_T0_OT1_T2_ENKUlObSC_SH_E_clESN_SC_SH_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE8TreeEvalI7CScriptbRZNKS4_8ToScriptIS2_EES6_RKT_EUlbRKS4_mE_ZNKS7_IS2_EES6_SA_EUlbSC_NSt3__14spanIS6_Lm18446744073709551615EEEE_EES8_T0_OT1_T2_ENKUlObSC_SH_E_clESN_SC_SH_ Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE8TreeEvalI7CScriptbRZNKS1_8ToScriptIN12_GLOBAL__N_111ScriptMakerEEES3_RKT_EUlbRKS1_mE_ZNKS4_IS6_EES3_S9_EUlbSB_NSt3__14spanIS3_Lm18446744073709551615EEEE_EES7_T0_OT1_T2_ENKUlObSB_SG_E_clESM_SB_SG_ |
693 | 0 | )); |
694 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE8TreeEvalI7CScriptbRZNKS2_8ToScriptIN12_GLOBAL__N_113ParserContextEEES4_RKT_EUlbRKS2_mE_ZNKS5_IS7_EES4_SA_EUlbSC_NSt3__14spanIS4_Lm18446744073709551615EEEE_EES8_T0_OT1_T2_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE8TreeEvalI7CScriptbRZNKS4_8ToScriptIS2_EES6_RKT_EUlbRKS4_mE_ZNKS7_IS2_EES6_SA_EUlbSC_NSt3__14spanIS6_Lm18446744073709551615EEEE_EES8_T0_OT1_T2_ Unexecuted instantiation: descriptor.cpp:_ZNK10miniscript4NodeIjE8TreeEvalI7CScriptbRZNKS1_8ToScriptIN12_GLOBAL__N_111ScriptMakerEEES3_RKT_EUlbRKS1_mE_ZNKS4_IS6_EES3_S9_EUlbSB_NSt3__14spanIS3_Lm18446744073709551615EEEE_EES7_T0_OT1_T2_ |
695 | | |
696 | | /** Like TreeEval, but without downfn or State type. |
697 | | * upfn takes (const Node&, std::span<Result>) and returns Result. */ |
698 | | template<typename Result, typename UpFn> |
699 | | Result TreeEval(UpFn upfn) const |
700 | 0 | { |
701 | 0 | struct DummyState {}; |
702 | 0 | return std::move(*TreeEvalMaybe<Result>(DummyState{}, |
703 | 0 | [](DummyState, const Node&, size_t) { return DummyState{}; }, Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckIN12_GLOBAL__N_113ParserContextEEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS9_EEvSC_EUlRKS2_NS4_4spanISH_Lm18446744073709551615EEEE_EESA_T0_ENKUlZNKS3_ISH_SM_EESA_SN_E10DummyStateSJ_mE_clESO_SJ_m Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalINS_8internal11InputResultEZNKS2_12ProduceInputIN12_GLOBAL__N_116SatisfierContextEEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES9_T0_ENKUlZNKS3_IS5_SH_EES9_SI_E10DummyStateSD_mE_clESJ_SD_m Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalIiZNKS2_13IsSatisfiableIZN12_GLOBAL__N_18TestNodeENS_17MiniscriptContextERKNSt3__110unique_ptrIKS2_NS7_14default_deleteIS9_EEEER18FuzzedDataProviderE3$_0EEbT_EUlRS9_NS7_4spanIiLm18446744073709551615EEEE_EESI_T0_ENKUlZNKS3_IiSM_EESI_SN_E10DummyStateSJ_mE_clESO_SJ_m Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckIN12_GLOBAL__N_113KeyComparatorEEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS9_EEvSC_EUlRKS2_NS4_4spanISH_Lm18446744073709551615EEEE_EESA_T0_ENKUlZNKS3_ISH_SM_EESA_SN_E10DummyStateSJ_mE_clESO_SJ_m Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE8TreeEvalINSt3__18optionalINS6_3setIS3_ZNKS4_17DuplicateKeyCheckIS2_EEvRKT_E4CompNS6_9allocatorIS3_EEEEEEZNKS9_IS2_EEvSC_EUlRKS4_NS6_4spanISH_Lm18446744073709551615EEEE_EESA_T0_ENKUlZNKS5_ISH_SM_EESA_SN_E10DummyStateSJ_mE_clESO_SJ_m Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE8TreeEvalINSt3__18optionalINS3_3setIjZNKS1_17DuplicateKeyCheckIN12_GLOBAL__N_19KeyParserEEEvRKT_E4CompNS3_9allocatorIjEEEEEEZNKS6_IS8_EEvSB_EUlRKS1_NS3_4spanISG_Lm18446744073709551615EEEE_EES9_T0_ENKUlZNKS2_ISG_SL_EES9_SM_E10DummyStateSI_mE_clESN_SI_m Unexecuted instantiation: _ZZNK10miniscript4NodeIjE8TreeEvalIPKS1_ZNKS1_13FindInsaneSubEvEUlRS3_NSt3__14spanIS4_Lm18446744073709551615EEEE_EET_T0_ENKUlZNKS2_IS4_S9_EESA_SB_E10DummyStateS5_mE_clESC_S5_m Unexecuted instantiation: _ZZNK10miniscript4NodeIjE8TreeEvalINSt3__110unique_ptrIKS1_NS3_14default_deleteIS5_EEEEZNKS1_5CloneEvEUlRS5_NS3_4spanIS8_Lm18446744073709551615EEEE_EET_T0_ENKUlZNKS2_IS8_SC_EESD_SE_E10DummyStateS9_mE_clESF_S9_m Unexecuted instantiation: _ZZNK10miniscript4NodeI11XOnlyPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckI12TapSatisfierEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS8_EEvSB_EUlRKS2_NS4_4spanISG_Lm18446744073709551615EEEE_EES9_T0_ENKUlZNKS3_ISG_SL_EES9_SM_E10DummyStateSI_mE_clESN_SI_m Unexecuted instantiation: _ZZNK10miniscript4NodeI11XOnlyPubKeyE8TreeEvalINS_8internal11InputResultEZNKS2_12ProduceInputI12TapSatisfierEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES8_T0_ENKUlZNKS3_IS5_SG_EES8_SH_E10DummyStateSC_mE_clESI_SC_m Unexecuted instantiation: _ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckI12WshSatisfierEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS8_EEvSB_EUlRKS2_NS4_4spanISG_Lm18446744073709551615EEEE_EES9_T0_ENKUlZNKS3_ISG_SL_EES9_SM_E10DummyStateSI_mE_clESN_SI_m Unexecuted instantiation: _ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalINS_8internal11InputResultEZNKS2_12ProduceInputI12WshSatisfierEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES8_T0_ENKUlZNKS3_IS5_SG_EES8_SH_E10DummyStateSC_mE_clESI_SC_m |
704 | 0 | [&upfn](DummyState, const Node& node, std::span<Result> subs) { |
705 | 0 | Result res{upfn(node, subs)}; |
706 | 0 | return std::optional<Result>(std::move(res)); |
707 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckIN12_GLOBAL__N_113ParserContextEEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS9_EEvSC_EUlRKS2_NS4_4spanISH_Lm18446744073709551615EEEE_EESA_T0_ENKUlZNKS3_ISH_SM_EESA_SN_E10DummyStateSJ_SL_E_clESO_SJ_SL_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalINS_8internal11InputResultEZNKS2_12ProduceInputIN12_GLOBAL__N_116SatisfierContextEEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES9_T0_ENKUlZNKS3_IS5_SH_EES9_SI_E10DummyStateSD_SG_E_clESJ_SD_SG_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalIiZNKS2_13IsSatisfiableIZN12_GLOBAL__N_18TestNodeENS_17MiniscriptContextERKNSt3__110unique_ptrIKS2_NS7_14default_deleteIS9_EEEER18FuzzedDataProviderE3$_0EEbT_EUlRS9_NS7_4spanIiLm18446744073709551615EEEE_EESI_T0_ENKUlZNKS3_IiSM_EESI_SN_E10DummyStateSJ_SL_E_clESO_SJ_SL_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckIN12_GLOBAL__N_113KeyComparatorEEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS9_EEvSC_EUlRKS2_NS4_4spanISH_Lm18446744073709551615EEEE_EESA_T0_ENKUlZNKS3_ISH_SM_EESA_SN_E10DummyStateSJ_SL_E_clESO_SJ_SL_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE8TreeEvalINSt3__18optionalINS6_3setIS3_ZNKS4_17DuplicateKeyCheckIS2_EEvRKT_E4CompNS6_9allocatorIS3_EEEEEEZNKS9_IS2_EEvSC_EUlRKS4_NS6_4spanISH_Lm18446744073709551615EEEE_EESA_T0_ENKUlZNKS5_ISH_SM_EESA_SN_E10DummyStateSJ_SL_E_clESO_SJ_SL_ Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE8TreeEvalINSt3__18optionalINS3_3setIjZNKS1_17DuplicateKeyCheckIN12_GLOBAL__N_19KeyParserEEEvRKT_E4CompNS3_9allocatorIjEEEEEEZNKS6_IS8_EEvSB_EUlRKS1_NS3_4spanISG_Lm18446744073709551615EEEE_EES9_T0_ENKUlZNKS2_ISG_SL_EES9_SM_E10DummyStateSI_SK_E_clESN_SI_SK_ Unexecuted instantiation: _ZZNK10miniscript4NodeIjE8TreeEvalIPKS1_ZNKS1_13FindInsaneSubEvEUlRS3_NSt3__14spanIS4_Lm18446744073709551615EEEE_EET_T0_ENKUlZNKS2_IS4_S9_EESA_SB_E10DummyStateS5_S8_E_clESC_S5_S8_ Unexecuted instantiation: _ZZNK10miniscript4NodeIjE8TreeEvalINSt3__110unique_ptrIKS1_NS3_14default_deleteIS5_EEEEZNKS1_5CloneEvEUlRS5_NS3_4spanIS8_Lm18446744073709551615EEEE_EET_T0_ENKUlZNKS2_IS8_SC_EESD_SE_E10DummyStateS9_SB_E_clESF_S9_SB_ Unexecuted instantiation: _ZZNK10miniscript4NodeI11XOnlyPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckI12TapSatisfierEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS8_EEvSB_EUlRKS2_NS4_4spanISG_Lm18446744073709551615EEEE_EES9_T0_ENKUlZNKS3_ISG_SL_EES9_SM_E10DummyStateSI_SK_E_clESN_SI_SK_ Unexecuted instantiation: _ZZNK10miniscript4NodeI11XOnlyPubKeyE8TreeEvalINS_8internal11InputResultEZNKS2_12ProduceInputI12TapSatisfierEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES8_T0_ENKUlZNKS3_IS5_SG_EES8_SH_E10DummyStateSC_SF_E_clESI_SC_SF_ Unexecuted instantiation: _ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckI12WshSatisfierEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS8_EEvSB_EUlRKS2_NS4_4spanISG_Lm18446744073709551615EEEE_EES9_T0_ENKUlZNKS3_ISG_SL_EES9_SM_E10DummyStateSI_SK_E_clESN_SI_SK_ Unexecuted instantiation: _ZZNK10miniscript4NodeI7CPubKeyE8TreeEvalINS_8internal11InputResultEZNKS2_12ProduceInputI12WshSatisfierEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES8_T0_ENKUlZNKS3_IS5_SG_EES8_SH_E10DummyStateSC_SF_E_clESI_SC_SF_ |
708 | 0 | )); |
709 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckIN12_GLOBAL__N_113ParserContextEEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS9_EEvSC_EUlRKS2_NS4_4spanISH_Lm18446744073709551615EEEE_EESA_T0_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE8TreeEvalINS_8internal11InputResultEZNKS2_12ProduceInputIN12_GLOBAL__N_116SatisfierContextEEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES9_T0_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE8TreeEvalIiZNKS2_13IsSatisfiableIZN12_GLOBAL__N_18TestNodeENS_17MiniscriptContextERKNSt3__110unique_ptrIKS2_NS7_14default_deleteIS9_EEEER18FuzzedDataProviderE3$_0EEbT_EUlRS9_NS7_4spanIiLm18446744073709551615EEEE_EESI_T0_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckIN12_GLOBAL__N_113KeyComparatorEEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS9_EEvSC_EUlRKS2_NS4_4spanISH_Lm18446744073709551615EEEE_EESA_T0_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE8TreeEvalINSt3__18optionalINS6_3setIS3_ZNKS4_17DuplicateKeyCheckIS2_EEvRKT_E4CompNS6_9allocatorIS3_EEEEEEZNKS9_IS2_EEvSC_EUlRKS4_NS6_4spanISH_Lm18446744073709551615EEEE_EESA_T0_ Unexecuted instantiation: descriptor.cpp:_ZNK10miniscript4NodeIjE8TreeEvalINSt3__18optionalINS3_3setIjZNKS1_17DuplicateKeyCheckIN12_GLOBAL__N_19KeyParserEEEvRKT_E4CompNS3_9allocatorIjEEEEEEZNKS6_IS8_EEvSB_EUlRKS1_NS3_4spanISG_Lm18446744073709551615EEEE_EES9_T0_ Unexecuted instantiation: _ZNK10miniscript4NodeIjE8TreeEvalIPKS1_ZNKS1_13FindInsaneSubEvEUlRS3_NSt3__14spanIS4_Lm18446744073709551615EEEE_EET_T0_ Unexecuted instantiation: _ZNK10miniscript4NodeIjE8TreeEvalINSt3__110unique_ptrIKS1_NS3_14default_deleteIS5_EEEEZNKS1_5CloneEvEUlRS5_NS3_4spanIS8_Lm18446744073709551615EEEE_EET_T0_ Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckI12TapSatisfierEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS8_EEvSB_EUlRKS2_NS4_4spanISG_Lm18446744073709551615EEEE_EES9_T0_ Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE8TreeEvalINS_8internal11InputResultEZNKS2_12ProduceInputI12TapSatisfierEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES8_T0_ Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE8TreeEvalINSt3__18optionalINS4_3setIS1_ZNKS2_17DuplicateKeyCheckI12WshSatisfierEEvRKT_E4CompNS4_9allocatorIS1_EEEEEEZNKS7_IS8_EEvSB_EUlRKS2_NS4_4spanISG_Lm18446744073709551615EEEE_EES9_T0_ Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE8TreeEvalINS_8internal11InputResultEZNKS2_12ProduceInputI12WshSatisfierEES5_RKT_EUlRKS2_NSt3__14spanIS5_Lm18446744073709551615EEEE0_EES8_T0_ |
710 | | |
711 | | /** Compare two miniscript subtrees, using a non-recursive algorithm. */ |
712 | | friend int Compare(const Node<Key>& node1, const Node<Key>& node2) |
713 | 0 | { |
714 | 0 | std::vector<std::pair<const Node<Key>&, const Node<Key>&>> queue; |
715 | 0 | queue.emplace_back(node1, node2); |
716 | 0 | while (!queue.empty()) { |
717 | 0 | const auto& [a, b] = queue.back(); |
718 | 0 | queue.pop_back(); |
719 | 0 | if (std::tie(a.fragment, a.k, a.keys, a.data) < std::tie(b.fragment, b.k, b.keys, b.data)) return -1; |
720 | 0 | if (std::tie(b.fragment, b.k, b.keys, b.data) < std::tie(a.fragment, a.k, a.keys, a.data)) return 1; |
721 | 0 | if (a.subs.size() < b.subs.size()) return -1; |
722 | 0 | if (b.subs.size() < a.subs.size()) return 1; |
723 | 0 | size_t n = a.subs.size(); |
724 | 0 | for (size_t i = 0; i < n; ++i) { |
725 | 0 | queue.emplace_back(*a.subs[n - 1 - i], *b.subs[n - 1 - i]); |
726 | 0 | } |
727 | 0 | } |
728 | 0 | return 0; |
729 | 0 | } |
730 | | |
731 | | //! Compute the type for this miniscript. |
732 | 0 | Type CalcType() const { |
733 | 0 | using namespace internal; |
734 | | |
735 | | // THRESH has a variable number of subexpressions |
736 | 0 | std::vector<Type> sub_types; |
737 | 0 | if (fragment == Fragment::THRESH) { |
738 | 0 | for (const auto& sub : subs) sub_types.push_back(sub->GetType()); |
739 | 0 | } |
740 | | // All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions. |
741 | 0 | static constexpr auto NONE_MST{""_mst}; |
742 | 0 | Type x = subs.size() > 0 ? subs[0]->GetType() : NONE_MST; |
743 | 0 | Type y = subs.size() > 1 ? subs[1]->GetType() : NONE_MST; |
744 | 0 | Type z = subs.size() > 2 ? subs[2]->GetType() : NONE_MST; |
745 | |
|
746 | 0 | return SanitizeType(ComputeType(fragment, x, y, z, sub_types, k, data.size(), subs.size(), keys.size(), m_script_ctx)); |
747 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE8CalcTypeEv Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE8CalcTypeEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE8CalcTypeEv Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE8CalcTypeEv |
748 | | |
749 | | public: |
750 | | template<typename Ctx> |
751 | | CScript ToScript(const Ctx& ctx) const |
752 | 0 | { |
753 | | // To construct the CScript for a Miniscript object, we use the TreeEval algorithm. |
754 | | // The State is a boolean: whether or not the node's script expansion is followed |
755 | | // by an OP_VERIFY (which may need to be combined with the last script opcode). |
756 | 0 | auto downfn = [](bool verify, const Node& node, size_t index) { |
757 | | // For WRAP_V, the subexpression is certainly followed by OP_VERIFY. |
758 | 0 | if (node.fragment == Fragment::WRAP_V) return true; |
759 | | // The subexpression of WRAP_S, and the last subexpression of AND_V |
760 | | // inherit the followed-by-OP_VERIFY property from the parent. |
761 | 0 | if (node.fragment == Fragment::WRAP_S || |
762 | 0 | (node.fragment == Fragment::AND_V && index == 1)) return verify; |
763 | 0 | return false; |
764 | 0 | }; Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8ToScriptIN12_GLOBAL__N_113ParserContextEEE7CScriptRKT_ENKUlbRKS2_mE_clEbSB_m Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE8ToScriptIS2_EE7CScriptRKT_ENKUlbRKS4_mE_clEbSB_m Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE8ToScriptIN12_GLOBAL__N_111ScriptMakerEEE7CScriptRKT_ENKUlbRKS1_mE_clEbSA_m |
765 | | // The upward function computes for a node, given its followed-by-OP_VERIFY status |
766 | | // and the CScripts of its child nodes, the CScript of the node. |
767 | 0 | const bool is_tapscript{IsTapscript(m_script_ctx)}; |
768 | 0 | auto upfn = [&ctx, is_tapscript](bool verify, const Node& node, std::span<CScript> subs) -> CScript { |
769 | 0 | switch (node.fragment) { |
770 | 0 | case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0])); |
771 | 0 | case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY); |
772 | 0 | case Fragment::OLDER: return BuildScript(node.k, OP_CHECKSEQUENCEVERIFY); |
773 | 0 | case Fragment::AFTER: return BuildScript(node.k, OP_CHECKLOCKTIMEVERIFY); |
774 | 0 | case Fragment::SHA256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_SHA256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL); |
775 | 0 | case Fragment::RIPEMD160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_RIPEMD160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL); |
776 | 0 | case Fragment::HASH256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL); |
777 | 0 | case Fragment::HASH160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL); |
778 | 0 | case Fragment::WRAP_A: return BuildScript(OP_TOALTSTACK, subs[0], OP_FROMALTSTACK); |
779 | 0 | case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]); |
780 | 0 | case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG); |
781 | 0 | case Fragment::WRAP_D: return BuildScript(OP_DUP, OP_IF, subs[0], OP_ENDIF); |
782 | 0 | case Fragment::WRAP_V: { |
783 | 0 | if (node.subs[0]->GetType() << "x"_mst) { |
784 | 0 | return BuildScript(std::move(subs[0]), OP_VERIFY); |
785 | 0 | } else { |
786 | 0 | return std::move(subs[0]); |
787 | 0 | } |
788 | 0 | } |
789 | 0 | case Fragment::WRAP_J: return BuildScript(OP_SIZE, OP_0NOTEQUAL, OP_IF, subs[0], OP_ENDIF); |
790 | 0 | case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL); |
791 | 0 | case Fragment::JUST_1: return BuildScript(OP_1); |
792 | 0 | case Fragment::JUST_0: return BuildScript(OP_0); |
793 | 0 | case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]); |
794 | 0 | case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND); |
795 | 0 | case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR); |
796 | 0 | case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF); |
797 | 0 | case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF); |
798 | 0 | case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF); |
799 | 0 | case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF); |
800 | 0 | case Fragment::MULTI: { |
801 | 0 | CHECK_NONFATAL(!is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(!is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(!is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
802 | 0 | CScript script = BuildScript(node.k); |
803 | 0 | for (const auto& key : node.keys) { |
804 | 0 | script = BuildScript(std::move(script), ctx.ToPKBytes(key)); |
805 | 0 | } |
806 | 0 | return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG); |
807 | 0 | } |
808 | 0 | case Fragment::MULTI_A: { |
809 | 0 | CHECK_NONFATAL(is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
810 | 0 | CScript script = BuildScript(ctx.ToPKBytes(*node.keys.begin()), OP_CHECKSIG); |
811 | 0 | for (auto it = node.keys.begin() + 1; it != node.keys.end(); ++it) { |
812 | 0 | script = BuildScript(std::move(script), ctx.ToPKBytes(*it), OP_CHECKSIGADD); |
813 | 0 | } |
814 | 0 | return BuildScript(std::move(script), node.k, verify ? OP_NUMEQUALVERIFY : OP_NUMEQUAL); |
815 | 0 | } |
816 | 0 | case Fragment::THRESH: { |
817 | 0 | CScript script = std::move(subs[0]); |
818 | 0 | for (size_t i = 1; i < subs.size(); ++i) { |
819 | 0 | script = BuildScript(std::move(script), subs[i], OP_ADD); |
820 | 0 | } |
821 | 0 | return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL); |
822 | 0 | } |
823 | 0 | } |
824 | 0 | assert(false); |
825 | 0 | }; Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8ToScriptIN12_GLOBAL__N_113ParserContextEEE7CScriptRKT_ENKUlbRKS2_NSt3__14spanIS6_Lm18446744073709551615EEEE_clEbSB_SE_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE8ToScriptIS2_EE7CScriptRKT_ENKUlbRKS4_NSt3__14spanIS6_Lm18446744073709551615EEEE_clEbSB_SE_ Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE8ToScriptIN12_GLOBAL__N_111ScriptMakerEEE7CScriptRKT_ENKUlbRKS1_NSt3__14spanIS5_Lm18446744073709551615EEEE_clEbSA_SD_ |
826 | 0 | return TreeEval<CScript>(false, downfn, upfn); |
827 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE8ToScriptIN12_GLOBAL__N_113ParserContextEEE7CScriptRKT_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE8ToScriptIS2_EE7CScriptRKT_ Unexecuted instantiation: descriptor.cpp:_ZNK10miniscript4NodeIjE8ToScriptIN12_GLOBAL__N_111ScriptMakerEEE7CScriptRKT_ |
828 | | |
829 | | template<typename CTx> |
830 | 0 | std::optional<std::string> ToString(const CTx& ctx) const { |
831 | | // To construct the std::string representation for a Miniscript object, we use |
832 | | // the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a |
833 | | // wrapper. If so, non-wrapper expressions must be prefixed with a ":". |
834 | 0 | auto downfn = [](bool, const Node& node, size_t) { |
835 | 0 | return (node.fragment == Fragment::WRAP_A || node.fragment == Fragment::WRAP_S || |
836 | 0 | node.fragment == Fragment::WRAP_D || node.fragment == Fragment::WRAP_V || |
837 | 0 | node.fragment == Fragment::WRAP_J || node.fragment == Fragment::WRAP_N || |
838 | 0 | node.fragment == Fragment::WRAP_C || |
839 | 0 | (node.fragment == Fragment::AND_V && node.subs[1]->fragment == Fragment::JUST_1) || |
840 | 0 | (node.fragment == Fragment::OR_I && node.subs[0]->fragment == Fragment::JUST_0) || |
841 | 0 | (node.fragment == Fragment::OR_I && node.subs[1]->fragment == Fragment::JUST_0)); |
842 | 0 | }; Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8ToStringIN12_GLOBAL__N_113ParserContextEEENSt3__18optionalINS6_12basic_stringIcNS6_11char_traitsIcEENS6_9allocatorIcEEEEEERKT_ENKUlbRKS2_mE_clEbSJ_m Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE8ToStringIN12_GLOBAL__N_19KeyParserEEENSt3__18optionalINS5_12basic_stringIcNS5_11char_traitsIcEENS5_9allocatorIcEEEEEERKT_ENKUlbRKS1_mE_clEbSI_m Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE8ToStringIN12_GLOBAL__N_111StringMakerEEENSt3__18optionalINS5_12basic_stringIcNS5_11char_traitsIcEENS5_9allocatorIcEEEEEERKT_ENKUlbRKS1_mE_clEbSI_m |
843 | | // The upward function computes for a node, given whether its parent is a wrapper, |
844 | | // and the string representations of its child nodes, the string representation of the node. |
845 | 0 | const bool is_tapscript{IsTapscript(m_script_ctx)}; |
846 | 0 | auto upfn = [&ctx, is_tapscript](bool wrapped, const Node& node, std::span<std::string> subs) -> std::optional<std::string> { |
847 | 0 | std::string ret = wrapped ? ":" : ""; |
848 | |
|
849 | 0 | switch (node.fragment) { |
850 | 0 | case Fragment::WRAP_A: return "a" + std::move(subs[0]); |
851 | 0 | case Fragment::WRAP_S: return "s" + std::move(subs[0]); |
852 | 0 | case Fragment::WRAP_C: |
853 | 0 | if (node.subs[0]->fragment == Fragment::PK_K) { |
854 | | // pk(K) is syntactic sugar for c:pk_k(K) |
855 | 0 | auto key_str = ctx.ToString(node.subs[0]->keys[0]); |
856 | 0 | if (!key_str) return {}; |
857 | 0 | return std::move(ret) + "pk(" + std::move(*key_str) + ")"; |
858 | 0 | } |
859 | 0 | if (node.subs[0]->fragment == Fragment::PK_H) { |
860 | | // pkh(K) is syntactic sugar for c:pk_h(K) |
861 | 0 | auto key_str = ctx.ToString(node.subs[0]->keys[0]); |
862 | 0 | if (!key_str) return {}; |
863 | 0 | return std::move(ret) + "pkh(" + std::move(*key_str) + ")"; |
864 | 0 | } |
865 | 0 | return "c" + std::move(subs[0]); |
866 | 0 | case Fragment::WRAP_D: return "d" + std::move(subs[0]); |
867 | 0 | case Fragment::WRAP_V: return "v" + std::move(subs[0]); |
868 | 0 | case Fragment::WRAP_J: return "j" + std::move(subs[0]); |
869 | 0 | case Fragment::WRAP_N: return "n" + std::move(subs[0]); |
870 | 0 | case Fragment::AND_V: |
871 | | // t:X is syntactic sugar for and_v(X,1). |
872 | 0 | if (node.subs[1]->fragment == Fragment::JUST_1) return "t" + std::move(subs[0]); |
873 | 0 | break; |
874 | 0 | case Fragment::OR_I: |
875 | 0 | if (node.subs[0]->fragment == Fragment::JUST_0) return "l" + std::move(subs[1]); |
876 | 0 | if (node.subs[1]->fragment == Fragment::JUST_0) return "u" + std::move(subs[0]); |
877 | 0 | break; |
878 | 0 | default: break; |
879 | 0 | } |
880 | 0 | switch (node.fragment) { |
881 | 0 | case Fragment::PK_K: { |
882 | 0 | auto key_str = ctx.ToString(node.keys[0]); |
883 | 0 | if (!key_str) return {}; |
884 | 0 | return std::move(ret) + "pk_k(" + std::move(*key_str) + ")"; |
885 | 0 | } |
886 | 0 | case Fragment::PK_H: { |
887 | 0 | auto key_str = ctx.ToString(node.keys[0]); |
888 | 0 | if (!key_str) return {}; |
889 | 0 | return std::move(ret) + "pk_h(" + std::move(*key_str) + ")"; |
890 | 0 | } |
891 | 0 | case Fragment::AFTER: return std::move(ret) + "after(" + util::ToString(node.k) + ")"; |
892 | 0 | case Fragment::OLDER: return std::move(ret) + "older(" + util::ToString(node.k) + ")"; |
893 | 0 | case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")"; |
894 | 0 | case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")"; |
895 | 0 | case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")"; |
896 | 0 | case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")"; |
897 | 0 | case Fragment::JUST_1: return std::move(ret) + "1"; |
898 | 0 | case Fragment::JUST_0: return std::move(ret) + "0"; |
899 | 0 | case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; |
900 | 0 | case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; |
901 | 0 | case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; |
902 | 0 | case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; |
903 | 0 | case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; |
904 | 0 | case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; |
905 | 0 | case Fragment::ANDOR: |
906 | | // and_n(X,Y) is syntactic sugar for andor(X,Y,0). |
907 | 0 | if (node.subs[2]->fragment == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")"; |
908 | 0 | return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")"; |
909 | 0 | case Fragment::MULTI: { |
910 | 0 | CHECK_NONFATAL(!is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(!is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(!is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
911 | 0 | auto str = std::move(ret) + "multi(" + util::ToString(node.k); |
912 | 0 | for (const auto& key : node.keys) { |
913 | 0 | auto key_str = ctx.ToString(key); |
914 | 0 | if (!key_str) return {}; |
915 | 0 | str += "," + std::move(*key_str); |
916 | 0 | } |
917 | 0 | return std::move(str) + ")"; |
918 | 0 | } |
919 | 0 | case Fragment::MULTI_A: { |
920 | 0 | CHECK_NONFATAL(is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(is_tapscript); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
921 | 0 | auto str = std::move(ret) + "multi_a(" + util::ToString(node.k); |
922 | 0 | for (const auto& key : node.keys) { |
923 | 0 | auto key_str = ctx.ToString(key); |
924 | 0 | if (!key_str) return {}; |
925 | 0 | str += "," + std::move(*key_str); |
926 | 0 | } |
927 | 0 | return std::move(str) + ")"; |
928 | 0 | } |
929 | 0 | case Fragment::THRESH: { |
930 | 0 | auto str = std::move(ret) + "thresh(" + util::ToString(node.k); |
931 | 0 | for (auto& sub : subs) { |
932 | 0 | str += "," + std::move(sub); |
933 | 0 | } |
934 | 0 | return std::move(str) + ")"; |
935 | 0 | } |
936 | 0 | default: break; |
937 | 0 | } |
938 | 0 | assert(false); |
939 | 0 | }; Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE8ToStringIN12_GLOBAL__N_113ParserContextEEENSt3__18optionalINS6_12basic_stringIcNS6_11char_traitsIcEENS6_9allocatorIcEEEEEERKT_ENKUlbRKS2_NS6_4spanISD_Lm18446744073709551615EEEE_clEbSJ_SL_ Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE8ToStringIN12_GLOBAL__N_19KeyParserEEENSt3__18optionalINS5_12basic_stringIcNS5_11char_traitsIcEENS5_9allocatorIcEEEEEERKT_ENKUlbRKS1_NS5_4spanISC_Lm18446744073709551615EEEE_clEbSI_SK_ Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE8ToStringIN12_GLOBAL__N_111StringMakerEEENSt3__18optionalINS5_12basic_stringIcNS5_11char_traitsIcEENS5_9allocatorIcEEEEEERKT_ENKUlbRKS1_NS5_4spanISC_Lm18446744073709551615EEEE_clEbSI_SK_ |
940 | |
|
941 | 0 | return TreeEvalMaybe<std::string>(false, downfn, upfn); |
942 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE8ToStringIN12_GLOBAL__N_113ParserContextEEENSt3__18optionalINS6_12basic_stringIcNS6_11char_traitsIcEENS6_9allocatorIcEEEEEERKT_ Unexecuted instantiation: descriptor.cpp:_ZNK10miniscript4NodeIjE8ToStringIN12_GLOBAL__N_19KeyParserEEENSt3__18optionalINS5_12basic_stringIcNS5_11char_traitsIcEENS5_9allocatorIcEEEEEERKT_ Unexecuted instantiation: descriptor.cpp:_ZNK10miniscript4NodeIjE8ToStringIN12_GLOBAL__N_111StringMakerEEENSt3__18optionalINS5_12basic_stringIcNS5_11char_traitsIcEENS5_9allocatorIcEEEEEERKT_ |
943 | | |
944 | | private: |
945 | 0 | internal::Ops CalcOps() const { |
946 | 0 | switch (fragment) { |
947 | 0 | case Fragment::JUST_1: return {0, 0, {}}; |
948 | 0 | case Fragment::JUST_0: return {0, {}, 0}; |
949 | 0 | case Fragment::PK_K: return {0, 0, 0}; |
950 | 0 | case Fragment::PK_H: return {3, 0, 0}; |
951 | 0 | case Fragment::OLDER: |
952 | 0 | case Fragment::AFTER: return {1, 0, {}}; |
953 | 0 | case Fragment::SHA256: |
954 | 0 | case Fragment::RIPEMD160: |
955 | 0 | case Fragment::HASH256: |
956 | 0 | case Fragment::HASH160: return {4, 0, {}}; |
957 | 0 | case Fragment::AND_V: return {subs[0]->ops.count + subs[1]->ops.count, subs[0]->ops.sat + subs[1]->ops.sat, {}}; |
958 | 0 | case Fragment::AND_B: { |
959 | 0 | const auto count{1 + subs[0]->ops.count + subs[1]->ops.count}; |
960 | 0 | const auto sat{subs[0]->ops.sat + subs[1]->ops.sat}; |
961 | 0 | const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat}; |
962 | 0 | return {count, sat, dsat}; |
963 | 0 | } |
964 | 0 | case Fragment::OR_B: { |
965 | 0 | const auto count{1 + subs[0]->ops.count + subs[1]->ops.count}; |
966 | 0 | const auto sat{(subs[0]->ops.sat + subs[1]->ops.dsat) | (subs[1]->ops.sat + subs[0]->ops.dsat)}; |
967 | 0 | const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat}; |
968 | 0 | return {count, sat, dsat}; |
969 | 0 | } |
970 | 0 | case Fragment::OR_D: { |
971 | 0 | const auto count{3 + subs[0]->ops.count + subs[1]->ops.count}; |
972 | 0 | const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)}; |
973 | 0 | const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat}; |
974 | 0 | return {count, sat, dsat}; |
975 | 0 | } |
976 | 0 | case Fragment::OR_C: { |
977 | 0 | const auto count{2 + subs[0]->ops.count + subs[1]->ops.count}; |
978 | 0 | const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)}; |
979 | 0 | return {count, sat, {}}; |
980 | 0 | } |
981 | 0 | case Fragment::OR_I: { |
982 | 0 | const auto count{3 + subs[0]->ops.count + subs[1]->ops.count}; |
983 | 0 | const auto sat{subs[0]->ops.sat | subs[1]->ops.sat}; |
984 | 0 | const auto dsat{subs[0]->ops.dsat | subs[1]->ops.dsat}; |
985 | 0 | return {count, sat, dsat}; |
986 | 0 | } |
987 | 0 | case Fragment::ANDOR: { |
988 | 0 | const auto count{3 + subs[0]->ops.count + subs[1]->ops.count + subs[2]->ops.count}; |
989 | 0 | const auto sat{(subs[1]->ops.sat + subs[0]->ops.sat) | (subs[0]->ops.dsat + subs[2]->ops.sat)}; |
990 | 0 | const auto dsat{subs[0]->ops.dsat + subs[2]->ops.dsat}; |
991 | 0 | return {count, sat, dsat}; |
992 | 0 | } |
993 | 0 | case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()}; |
994 | 0 | case Fragment::MULTI_A: return {(uint32_t)keys.size() + 1, 0, 0}; |
995 | 0 | case Fragment::WRAP_S: |
996 | 0 | case Fragment::WRAP_C: |
997 | 0 | case Fragment::WRAP_N: return {1 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat}; |
998 | 0 | case Fragment::WRAP_A: return {2 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat}; |
999 | 0 | case Fragment::WRAP_D: return {3 + subs[0]->ops.count, subs[0]->ops.sat, 0}; |
1000 | 0 | case Fragment::WRAP_J: return {4 + subs[0]->ops.count, subs[0]->ops.sat, 0}; |
1001 | 0 | case Fragment::WRAP_V: return {subs[0]->ops.count + (subs[0]->GetType() << "x"_mst), subs[0]->ops.sat, {}}; |
1002 | 0 | case Fragment::THRESH: { |
1003 | 0 | uint32_t count = 0; |
1004 | 0 | auto sats = Vector(internal::MaxInt<uint32_t>(0)); |
1005 | 0 | for (const auto& sub : subs) { |
1006 | 0 | count += sub->ops.count + 1; |
1007 | 0 | auto next_sats = Vector(sats[0] + sub->ops.dsat); |
1008 | 0 | for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ops.dsat) | (sats[j - 1] + sub->ops.sat)); |
1009 | 0 | next_sats.push_back(sats[sats.size() - 1] + sub->ops.sat); |
1010 | 0 | sats = std::move(next_sats); |
1011 | 0 | } |
1012 | 0 | assert(k < sats.size()); |
1013 | 0 | return {count, sats[k], sats[0]}; |
1014 | 0 | } |
1015 | 0 | } |
1016 | 0 | assert(false); |
1017 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE7CalcOpsEv Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE7CalcOpsEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE7CalcOpsEv Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE7CalcOpsEv |
1018 | | |
1019 | 0 | internal::StackSize CalcStackSize() const { |
1020 | 0 | using namespace internal; |
1021 | 0 | switch (fragment) { |
1022 | 0 | case Fragment::JUST_0: return {{}, SatInfo::Push()}; |
1023 | 0 | case Fragment::JUST_1: return {SatInfo::Push(), {}}; |
1024 | 0 | case Fragment::OLDER: |
1025 | 0 | case Fragment::AFTER: return {SatInfo::Push() + SatInfo::Nop(), {}}; |
1026 | 0 | case Fragment::PK_K: return {SatInfo::Push()}; |
1027 | 0 | case Fragment::PK_H: return {SatInfo::OP_DUP() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY()}; |
1028 | 0 | case Fragment::SHA256: |
1029 | 0 | case Fragment::RIPEMD160: |
1030 | 0 | case Fragment::HASH256: |
1031 | 0 | case Fragment::HASH160: return { |
1032 | 0 | SatInfo::OP_SIZE() + SatInfo::Push() + SatInfo::OP_EQUALVERIFY() + SatInfo::Hash() + SatInfo::Push() + SatInfo::OP_EQUAL(), |
1033 | 0 | {} |
1034 | 0 | }; |
1035 | 0 | case Fragment::ANDOR: { |
1036 | 0 | const auto& x{subs[0]->ss}; |
1037 | 0 | const auto& y{subs[1]->ss}; |
1038 | 0 | const auto& z{subs[2]->ss}; |
1039 | 0 | return { |
1040 | 0 | (x.sat + SatInfo::If() + y.sat) | (x.dsat + SatInfo::If() + z.sat), |
1041 | 0 | x.dsat + SatInfo::If() + z.dsat |
1042 | 0 | }; |
1043 | 0 | } |
1044 | 0 | case Fragment::AND_V: { |
1045 | 0 | const auto& x{subs[0]->ss}; |
1046 | 0 | const auto& y{subs[1]->ss}; |
1047 | 0 | return {x.sat + y.sat, {}}; |
1048 | 0 | } |
1049 | 0 | case Fragment::AND_B: { |
1050 | 0 | const auto& x{subs[0]->ss}; |
1051 | 0 | const auto& y{subs[1]->ss}; |
1052 | 0 | return {x.sat + y.sat + SatInfo::BinaryOp(), x.dsat + y.dsat + SatInfo::BinaryOp()}; |
1053 | 0 | } |
1054 | 0 | case Fragment::OR_B: { |
1055 | 0 | const auto& x{subs[0]->ss}; |
1056 | 0 | const auto& y{subs[1]->ss}; |
1057 | 0 | return { |
1058 | 0 | ((x.sat + y.dsat) | (x.dsat + y.sat)) + SatInfo::BinaryOp(), |
1059 | 0 | x.dsat + y.dsat + SatInfo::BinaryOp() |
1060 | 0 | }; |
1061 | 0 | } |
1062 | 0 | case Fragment::OR_C: { |
1063 | 0 | const auto& x{subs[0]->ss}; |
1064 | 0 | const auto& y{subs[1]->ss}; |
1065 | 0 | return {(x.sat + SatInfo::If()) | (x.dsat + SatInfo::If() + y.sat), {}}; |
1066 | 0 | } |
1067 | 0 | case Fragment::OR_D: { |
1068 | 0 | const auto& x{subs[0]->ss}; |
1069 | 0 | const auto& y{subs[1]->ss}; |
1070 | 0 | return { |
1071 | 0 | (x.sat + SatInfo::OP_IFDUP(true) + SatInfo::If()) | (x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.sat), |
1072 | 0 | x.dsat + SatInfo::OP_IFDUP(false) + SatInfo::If() + y.dsat |
1073 | 0 | }; |
1074 | 0 | } |
1075 | 0 | case Fragment::OR_I: { |
1076 | 0 | const auto& x{subs[0]->ss}; |
1077 | 0 | const auto& y{subs[1]->ss}; |
1078 | 0 | return {SatInfo::If() + (x.sat | y.sat), SatInfo::If() + (x.dsat | y.dsat)}; |
1079 | 0 | } |
1080 | | // multi(k, key1, key2, ..., key_n) starts off with k+1 stack elements (a 0, plus k |
1081 | | // signatures), then reaches n+k+3 stack elements after pushing the n keys, plus k and |
1082 | | // n itself, and ends with 1 stack element (success or failure). Thus, it net removes |
1083 | | // k elements (from k+1 to 1), while reaching k+n+2 more than it ends with. |
1084 | 0 | case Fragment::MULTI: return {SatInfo(k, k + keys.size() + 2)}; |
1085 | | // multi_a(k, key1, key2, ..., key_n) starts off with n stack elements (the |
1086 | | // signatures), reaches 1 more (after the first key push), and ends with 1. Thus it net |
1087 | | // removes n-1 elements (from n to 1) while reaching n more than it ends with. |
1088 | 0 | case Fragment::MULTI_A: return {SatInfo(keys.size() - 1, keys.size())}; |
1089 | 0 | case Fragment::WRAP_A: |
1090 | 0 | case Fragment::WRAP_N: |
1091 | 0 | case Fragment::WRAP_S: return subs[0]->ss; |
1092 | 0 | case Fragment::WRAP_C: return { |
1093 | 0 | subs[0]->ss.sat + SatInfo::OP_CHECKSIG(), |
1094 | 0 | subs[0]->ss.dsat + SatInfo::OP_CHECKSIG() |
1095 | 0 | }; |
1096 | 0 | case Fragment::WRAP_D: return { |
1097 | 0 | SatInfo::OP_DUP() + SatInfo::If() + subs[0]->ss.sat, |
1098 | 0 | SatInfo::OP_DUP() + SatInfo::If() |
1099 | 0 | }; |
1100 | 0 | case Fragment::WRAP_V: return {subs[0]->ss.sat + SatInfo::OP_VERIFY(), {}}; |
1101 | 0 | case Fragment::WRAP_J: return { |
1102 | 0 | SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() + subs[0]->ss.sat, |
1103 | 0 | SatInfo::OP_SIZE() + SatInfo::OP_0NOTEQUAL() + SatInfo::If() |
1104 | 0 | }; |
1105 | 0 | case Fragment::THRESH: { |
1106 | | // sats[j] is the SatInfo corresponding to all traces reaching j satisfactions. |
1107 | 0 | auto sats = Vector(SatInfo::Empty()); |
1108 | 0 | for (size_t i = 0; i < subs.size(); ++i) { |
1109 | | // Loop over the subexpressions, processing them one by one. After adding |
1110 | | // element i we need to add OP_ADD (if i>0). |
1111 | 0 | auto add = i ? SatInfo::BinaryOp() : SatInfo::Empty(); |
1112 | | // Construct a variable that will become the next sats, starting with index 0. |
1113 | 0 | auto next_sats = Vector(sats[0] + subs[i]->ss.dsat + add); |
1114 | | // Then loop to construct next_sats[1..i]. |
1115 | 0 | for (size_t j = 1; j < sats.size(); ++j) { |
1116 | 0 | next_sats.push_back(((sats[j] + subs[i]->ss.dsat) | (sats[j - 1] + subs[i]->ss.sat)) + add); |
1117 | 0 | } |
1118 | | // Finally construct next_sats[i+1]. |
1119 | 0 | next_sats.push_back(sats[sats.size() - 1] + subs[i]->ss.sat + add); |
1120 | | // Switch over. |
1121 | 0 | sats = std::move(next_sats); |
1122 | 0 | } |
1123 | | // To satisfy thresh we need k satisfactions; to dissatisfy we need 0. In both |
1124 | | // cases a push of k and an OP_EQUAL follow. |
1125 | 0 | return { |
1126 | 0 | sats[k] + SatInfo::Push() + SatInfo::OP_EQUAL(), |
1127 | 0 | sats[0] + SatInfo::Push() + SatInfo::OP_EQUAL() |
1128 | 0 | }; |
1129 | 0 | } |
1130 | 0 | } |
1131 | 0 | assert(false); |
1132 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE13CalcStackSizeEv Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE13CalcStackSizeEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE13CalcStackSizeEv Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE13CalcStackSizeEv |
1133 | | |
1134 | 0 | internal::WitnessSize CalcWitnessSize() const { |
1135 | 0 | const uint32_t sig_size = IsTapscript(m_script_ctx) ? 1 + 65 : 1 + 72; |
1136 | 0 | const uint32_t pubkey_size = IsTapscript(m_script_ctx) ? 1 + 32 : 1 + 33; |
1137 | 0 | switch (fragment) { |
1138 | 0 | case Fragment::JUST_0: return {{}, 0}; |
1139 | 0 | case Fragment::JUST_1: |
1140 | 0 | case Fragment::OLDER: |
1141 | 0 | case Fragment::AFTER: return {0, {}}; |
1142 | 0 | case Fragment::PK_K: return {sig_size, 1}; |
1143 | 0 | case Fragment::PK_H: return {sig_size + pubkey_size, 1 + pubkey_size}; |
1144 | 0 | case Fragment::SHA256: |
1145 | 0 | case Fragment::RIPEMD160: |
1146 | 0 | case Fragment::HASH256: |
1147 | 0 | case Fragment::HASH160: return {1 + 32, {}}; |
1148 | 0 | case Fragment::ANDOR: { |
1149 | 0 | const auto sat{(subs[0]->ws.sat + subs[1]->ws.sat) | (subs[0]->ws.dsat + subs[2]->ws.sat)}; |
1150 | 0 | const auto dsat{subs[0]->ws.dsat + subs[2]->ws.dsat}; |
1151 | 0 | return {sat, dsat}; |
1152 | 0 | } |
1153 | 0 | case Fragment::AND_V: return {subs[0]->ws.sat + subs[1]->ws.sat, {}}; |
1154 | 0 | case Fragment::AND_B: return {subs[0]->ws.sat + subs[1]->ws.sat, subs[0]->ws.dsat + subs[1]->ws.dsat}; |
1155 | 0 | case Fragment::OR_B: { |
1156 | 0 | const auto sat{(subs[0]->ws.dsat + subs[1]->ws.sat) | (subs[0]->ws.sat + subs[1]->ws.dsat)}; |
1157 | 0 | const auto dsat{subs[0]->ws.dsat + subs[1]->ws.dsat}; |
1158 | 0 | return {sat, dsat}; |
1159 | 0 | } |
1160 | 0 | case Fragment::OR_C: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), {}}; |
1161 | 0 | case Fragment::OR_D: return {subs[0]->ws.sat | (subs[0]->ws.dsat + subs[1]->ws.sat), subs[0]->ws.dsat + subs[1]->ws.dsat}; |
1162 | 0 | case Fragment::OR_I: return {(subs[0]->ws.sat + 1 + 1) | (subs[1]->ws.sat + 1), (subs[0]->ws.dsat + 1 + 1) | (subs[1]->ws.dsat + 1)}; |
1163 | 0 | case Fragment::MULTI: return {k * sig_size + 1, k + 1}; |
1164 | 0 | case Fragment::MULTI_A: return {k * sig_size + static_cast<uint32_t>(keys.size()) - k, static_cast<uint32_t>(keys.size())}; |
1165 | 0 | case Fragment::WRAP_A: |
1166 | 0 | case Fragment::WRAP_N: |
1167 | 0 | case Fragment::WRAP_S: |
1168 | 0 | case Fragment::WRAP_C: return subs[0]->ws; |
1169 | 0 | case Fragment::WRAP_D: return {1 + 1 + subs[0]->ws.sat, 1}; |
1170 | 0 | case Fragment::WRAP_V: return {subs[0]->ws.sat, {}}; |
1171 | 0 | case Fragment::WRAP_J: return {subs[0]->ws.sat, 1}; |
1172 | 0 | case Fragment::THRESH: { |
1173 | 0 | auto sats = Vector(internal::MaxInt<uint32_t>(0)); |
1174 | 0 | for (const auto& sub : subs) { |
1175 | 0 | auto next_sats = Vector(sats[0] + sub->ws.dsat); |
1176 | 0 | for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ws.dsat) | (sats[j - 1] + sub->ws.sat)); |
1177 | 0 | next_sats.push_back(sats[sats.size() - 1] + sub->ws.sat); |
1178 | 0 | sats = std::move(next_sats); |
1179 | 0 | } |
1180 | 0 | assert(k < sats.size()); |
1181 | 0 | return {sats[k], sats[0]}; |
1182 | 0 | } |
1183 | 0 | } |
1184 | 0 | assert(false); |
1185 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE15CalcWitnessSizeEv Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE15CalcWitnessSizeEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE15CalcWitnessSizeEv Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE15CalcWitnessSizeEv |
1186 | | |
1187 | | template<typename Ctx> |
1188 | 0 | internal::InputResult ProduceInput(const Ctx& ctx) const { |
1189 | 0 | using namespace internal; |
1190 | | |
1191 | | // Internal function which is invoked for every tree node, constructing satisfaction/dissatisfactions |
1192 | | // given those of its subnodes. |
1193 | 0 | auto helper = [&ctx](const Node& node, std::span<InputResult> subres) -> InputResult { |
1194 | 0 | switch (node.fragment) { |
1195 | 0 | case Fragment::PK_K: { |
1196 | 0 | std::vector<unsigned char> sig; |
1197 | 0 | Availability avail = ctx.Sign(node.keys[0], sig); |
1198 | 0 | return {ZERO, InputStack(std::move(sig)).SetWithSig().SetAvailable(avail)}; |
1199 | 0 | } |
1200 | 0 | case Fragment::PK_H: { |
1201 | 0 | std::vector<unsigned char> key = ctx.ToPKBytes(node.keys[0]), sig; |
1202 | 0 | Availability avail = ctx.Sign(node.keys[0], sig); |
1203 | 0 | return {ZERO + InputStack(key), (InputStack(std::move(sig)).SetWithSig() + InputStack(key)).SetAvailable(avail)}; |
1204 | 0 | } |
1205 | 0 | case Fragment::MULTI_A: { |
1206 | | // sats[j] represents the best stack containing j valid signatures (out of the first i keys). |
1207 | | // In the loop below, these stacks are built up using a dynamic programming approach. |
1208 | 0 | std::vector<InputStack> sats = Vector(EMPTY); |
1209 | 0 | for (size_t i = 0; i < node.keys.size(); ++i) { |
1210 | | // Get the signature for the i'th key in reverse order (the signature for the first key needs to |
1211 | | // be at the top of the stack, contrary to CHECKMULTISIG's satisfaction). |
1212 | 0 | std::vector<unsigned char> sig; |
1213 | 0 | Availability avail = ctx.Sign(node.keys[node.keys.size() - 1 - i], sig); |
1214 | | // Compute signature stack for just this key. |
1215 | 0 | auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail); |
1216 | | // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further |
1217 | | // next_sats[j] are equal to either the existing sats[j] + ZERO, or sats[j-1] plus a signature |
1218 | | // for the current (i'th) key. The very last element needs all signatures filled. |
1219 | 0 | std::vector<InputStack> next_sats; |
1220 | 0 | next_sats.push_back(sats[0] + ZERO); |
1221 | 0 | for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + ZERO) | (std::move(sats[j - 1]) + sat)); |
1222 | 0 | next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat)); |
1223 | | // Switch over. |
1224 | 0 | sats = std::move(next_sats); |
1225 | 0 | } |
1226 | | // The dissatisfaction consists of as many empty vectors as there are keys, which is the same as |
1227 | | // satisfying 0 keys. |
1228 | 0 | auto& nsat{sats[0]}; |
1229 | 0 | CHECK_NONFATAL(node.k != 0); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(node.k != 0); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(node.k != 0); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1230 | 0 | assert(node.k < sats.size()); |
1231 | 0 | return {std::move(nsat), std::move(sats[node.k])}; |
1232 | 0 | } |
1233 | 0 | case Fragment::MULTI: { |
1234 | | // sats[j] represents the best stack containing j valid signatures (out of the first i keys). |
1235 | | // In the loop below, these stacks are built up using a dynamic programming approach. |
1236 | | // sats[0] starts off being {0}, due to the CHECKMULTISIG bug that pops off one element too many. |
1237 | 0 | std::vector<InputStack> sats = Vector(ZERO); |
1238 | 0 | for (size_t i = 0; i < node.keys.size(); ++i) { |
1239 | 0 | std::vector<unsigned char> sig; |
1240 | 0 | Availability avail = ctx.Sign(node.keys[i], sig); |
1241 | | // Compute signature stack for just the i'th key. |
1242 | 0 | auto sat = InputStack(std::move(sig)).SetWithSig().SetAvailable(avail); |
1243 | | // Compute the next sats vector: next_sats[0] is a copy of sats[0] (no signatures). All further |
1244 | | // next_sats[j] are equal to either the existing sats[j], or sats[j-1] plus a signature for the |
1245 | | // current (i'th) key. The very last element needs all signatures filled. |
1246 | 0 | std::vector<InputStack> next_sats; |
1247 | 0 | next_sats.push_back(sats[0]); |
1248 | 0 | for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back(sats[j] | (std::move(sats[j - 1]) + sat)); |
1249 | 0 | next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(sat)); |
1250 | | // Switch over. |
1251 | 0 | sats = std::move(next_sats); |
1252 | 0 | } |
1253 | | // The dissatisfaction consists of k+1 stack elements all equal to 0. |
1254 | 0 | InputStack nsat = ZERO; |
1255 | 0 | for (size_t i = 0; i < node.k; ++i) nsat = std::move(nsat) + ZERO; |
1256 | 0 | assert(node.k < sats.size()); |
1257 | 0 | return {std::move(nsat), std::move(sats[node.k])}; |
1258 | 0 | } |
1259 | 0 | case Fragment::THRESH: { |
1260 | | // sats[k] represents the best stack that satisfies k out of the *last* i subexpressions. |
1261 | | // In the loop below, these stacks are built up using a dynamic programming approach. |
1262 | | // sats[0] starts off empty. |
1263 | 0 | std::vector<InputStack> sats = Vector(EMPTY); |
1264 | 0 | for (size_t i = 0; i < subres.size(); ++i) { |
1265 | | // Introduce an alias for the i'th last satisfaction/dissatisfaction. |
1266 | 0 | auto& res = subres[subres.size() - i - 1]; |
1267 | | // Compute the next sats vector: next_sats[0] is sats[0] plus res.nsat (thus containing all dissatisfactions |
1268 | | // so far. next_sats[j] is either sats[j] + res.nsat (reusing j earlier satisfactions) or sats[j-1] + res.sat |
1269 | | // (reusing j-1 earlier satisfactions plus a new one). The very last next_sats[j] is all satisfactions. |
1270 | 0 | std::vector<InputStack> next_sats; |
1271 | 0 | next_sats.push_back(sats[0] + res.nsat); |
1272 | 0 | for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + res.nsat) | (std::move(sats[j - 1]) + res.sat)); |
1273 | 0 | next_sats.push_back(std::move(sats[sats.size() - 1]) + std::move(res.sat)); |
1274 | | // Switch over. |
1275 | 0 | sats = std::move(next_sats); |
1276 | 0 | } |
1277 | | // At this point, sats[k].sat is the best satisfaction for the overall thresh() node. The best dissatisfaction |
1278 | | // is computed by gathering all sats[i].nsat for i != k. |
1279 | 0 | InputStack nsat = INVALID; |
1280 | 0 | for (size_t i = 0; i < sats.size(); ++i) { |
1281 | | // i==k is the satisfaction; i==0 is the canonical dissatisfaction; |
1282 | | // the rest are non-canonical (a no-signature dissatisfaction - the i=0 |
1283 | | // form - is always available) and malleable (due to overcompleteness). |
1284 | | // Marking the solutions malleable here is not strictly necessary, as they |
1285 | | // should already never be picked in non-malleable solutions due to the |
1286 | | // availability of the i=0 form. |
1287 | 0 | if (i != 0 && i != node.k) sats[i].SetMalleable().SetNonCanon(); |
1288 | | // Include all dissatisfactions (even these non-canonical ones) in nsat. |
1289 | 0 | if (i != node.k) nsat = std::move(nsat) | std::move(sats[i]); |
1290 | 0 | } |
1291 | 0 | assert(node.k < sats.size()); |
1292 | 0 | return {std::move(nsat), std::move(sats[node.k])}; |
1293 | 0 | } |
1294 | 0 | case Fragment::OLDER: { |
1295 | 0 | return {INVALID, ctx.CheckOlder(node.k) ? EMPTY : INVALID}; |
1296 | 0 | } |
1297 | 0 | case Fragment::AFTER: { |
1298 | 0 | return {INVALID, ctx.CheckAfter(node.k) ? EMPTY : INVALID}; |
1299 | 0 | } |
1300 | 0 | case Fragment::SHA256: { |
1301 | 0 | std::vector<unsigned char> preimage; |
1302 | 0 | Availability avail = ctx.SatSHA256(node.data, preimage); |
1303 | 0 | return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)}; |
1304 | 0 | } |
1305 | 0 | case Fragment::RIPEMD160: { |
1306 | 0 | std::vector<unsigned char> preimage; |
1307 | 0 | Availability avail = ctx.SatRIPEMD160(node.data, preimage); |
1308 | 0 | return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)}; |
1309 | 0 | } |
1310 | 0 | case Fragment::HASH256: { |
1311 | 0 | std::vector<unsigned char> preimage; |
1312 | 0 | Availability avail = ctx.SatHASH256(node.data, preimage); |
1313 | 0 | return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)}; |
1314 | 0 | } |
1315 | 0 | case Fragment::HASH160: { |
1316 | 0 | std::vector<unsigned char> preimage; |
1317 | 0 | Availability avail = ctx.SatHASH160(node.data, preimage); |
1318 | 0 | return {ZERO32, InputStack(std::move(preimage)).SetAvailable(avail)}; |
1319 | 0 | } |
1320 | 0 | case Fragment::AND_V: { |
1321 | 0 | auto& x = subres[0], &y = subres[1]; |
1322 | | // As the dissatisfaction here only consist of a single option, it doesn't |
1323 | | // actually need to be listed (it's not required for reasoning about malleability of |
1324 | | // other options), and is never required (no valid miniscript relies on the ability |
1325 | | // to satisfy the type V left subexpression). It's still listed here for |
1326 | | // completeness, as a hypothetical (not currently implemented) satisfier that doesn't |
1327 | | // care about malleability might in some cases prefer it still. |
1328 | 0 | return {(y.nsat + x.sat).SetNonCanon(), y.sat + x.sat}; |
1329 | 0 | } |
1330 | 0 | case Fragment::AND_B: { |
1331 | 0 | auto& x = subres[0], &y = subres[1]; |
1332 | | // Note that it is not strictly necessary to mark the 2nd and 3rd dissatisfaction here |
1333 | | // as malleable. While they are definitely malleable, they are also non-canonical due |
1334 | | // to the guaranteed existence of a no-signature other dissatisfaction (the 1st) |
1335 | | // option. Because of that, the 2nd and 3rd option will never be chosen, even if they |
1336 | | // weren't marked as malleable. |
1337 | 0 | return {(y.nsat + x.nsat) | (y.sat + x.nsat).SetMalleable().SetNonCanon() | (y.nsat + x.sat).SetMalleable().SetNonCanon(), y.sat + x.sat}; |
1338 | 0 | } |
1339 | 0 | case Fragment::OR_B: { |
1340 | 0 | auto& x = subres[0], &z = subres[1]; |
1341 | | // The (sat(Z) sat(X)) solution is overcomplete (attacker can change either into dsat). |
1342 | 0 | return {z.nsat + x.nsat, (z.nsat + x.sat) | (z.sat + x.nsat) | (z.sat + x.sat).SetMalleable().SetNonCanon()}; |
1343 | 0 | } |
1344 | 0 | case Fragment::OR_C: { |
1345 | 0 | auto& x = subres[0], &z = subres[1]; |
1346 | 0 | return {INVALID, std::move(x.sat) | (z.sat + x.nsat)}; |
1347 | 0 | } |
1348 | 0 | case Fragment::OR_D: { |
1349 | 0 | auto& x = subres[0], &z = subres[1]; |
1350 | 0 | return {z.nsat + x.nsat, std::move(x.sat) | (z.sat + x.nsat)}; |
1351 | 0 | } |
1352 | 0 | case Fragment::OR_I: { |
1353 | 0 | auto& x = subres[0], &z = subres[1]; |
1354 | 0 | return {(x.nsat + ONE) | (z.nsat + ZERO), (x.sat + ONE) | (z.sat + ZERO)}; |
1355 | 0 | } |
1356 | 0 | case Fragment::ANDOR: { |
1357 | 0 | auto& x = subres[0], &y = subres[1], &z = subres[2]; |
1358 | 0 | return {(y.nsat + x.sat).SetNonCanon() | (z.nsat + x.nsat), (y.sat + x.sat) | (z.sat + x.nsat)}; |
1359 | 0 | } |
1360 | 0 | case Fragment::WRAP_A: |
1361 | 0 | case Fragment::WRAP_S: |
1362 | 0 | case Fragment::WRAP_C: |
1363 | 0 | case Fragment::WRAP_N: |
1364 | 0 | return std::move(subres[0]); |
1365 | 0 | case Fragment::WRAP_D: { |
1366 | 0 | auto &x = subres[0]; |
1367 | 0 | return {ZERO, x.sat + ONE}; |
1368 | 0 | } |
1369 | 0 | case Fragment::WRAP_J: { |
1370 | 0 | auto &x = subres[0]; |
1371 | | // If a dissatisfaction with a nonzero top stack element exists, an alternative dissatisfaction exists. |
1372 | | // As the dissatisfaction logic currently doesn't keep track of this nonzeroness property, and thus even |
1373 | | // if a dissatisfaction with a top zero element is found, we don't know whether another one with a |
1374 | | // nonzero top stack element exists. Make the conservative assumption that whenever the subexpression is weakly |
1375 | | // dissatisfiable, this alternative dissatisfaction exists and leads to malleability. |
1376 | 0 | return {InputStack(ZERO).SetMalleable(x.nsat.available != Availability::NO && !x.nsat.has_sig), std::move(x.sat)}; |
1377 | 0 | } |
1378 | 0 | case Fragment::WRAP_V: { |
1379 | 0 | auto &x = subres[0]; |
1380 | 0 | return {INVALID, std::move(x.sat)}; |
1381 | 0 | } |
1382 | 0 | case Fragment::JUST_0: return {EMPTY, INVALID}; |
1383 | 0 | case Fragment::JUST_1: return {INVALID, EMPTY}; |
1384 | 0 | } |
1385 | 0 | assert(false); |
1386 | 0 | return {INVALID, INVALID}; |
1387 | 0 | }; Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE12ProduceInputIN12_GLOBAL__N_116SatisfierContextEEENS_8internal11InputResultERKT_ENKUlRKS2_NSt3__14spanIS7_Lm18446744073709551615EEEE_clESC_SF_ Unexecuted instantiation: _ZZNK10miniscript4NodeI11XOnlyPubKeyE12ProduceInputI12TapSatisfierEENS_8internal11InputResultERKT_ENKUlRKS2_NSt3__14spanIS6_Lm18446744073709551615EEEE_clESB_SE_ Unexecuted instantiation: _ZZNK10miniscript4NodeI7CPubKeyE12ProduceInputI12WshSatisfierEENS_8internal11InputResultERKT_ENKUlRKS2_NSt3__14spanIS6_Lm18446744073709551615EEEE_clESB_SE_ |
1388 | |
|
1389 | 0 | auto tester = [&helper](const Node& node, std::span<InputResult> subres) -> InputResult { |
1390 | 0 | auto ret = helper(node, subres); |
1391 | | |
1392 | | // Do a consistency check between the satisfaction code and the type checker |
1393 | | // (the actual satisfaction code in ProduceInputHelper does not use GetType) |
1394 | | |
1395 | | // For 'z' nodes, available satisfactions/dissatisfactions must have stack size 0. |
1396 | 0 | if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 0); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 0); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "z"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 0); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1397 | 0 | if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 0); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 0); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "z"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 0); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1398 | | |
1399 | | // For 'o' nodes, available satisfactions/dissatisfactions must have stack size 1. |
1400 | 0 | if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "o"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1401 | 0 | if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "o"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1402 | | |
1403 | | // For 'n' nodes, available satisfactions/dissatisfactions must have stack size 1 or larger. For satisfactions, |
1404 | | // the top element cannot be 0. |
1405 | 0 | if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() >= 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() >= 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.stack.size() >= 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1406 | 0 | if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() >= 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() >= 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "n"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.stack.size() >= 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1407 | 0 | if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.stack.back().empty()); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.stack.back().empty()); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "n"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.stack.back().empty()); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1408 | | |
1409 | | // For 'd' nodes, a dissatisfaction must exist, and they must not need a signature. If it is non-malleable, |
1410 | | // it must be canonical. |
1411 | 0 | if (node.GetType() << "d"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "d"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "d"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1412 | 0 | if (node.GetType() << "d"_mst) CHECK_NONFATAL(!ret.nsat.has_sig); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "d"_mst) CHECK_NONFATAL(!ret.nsat.has_sig); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "d"_mst) CHECK_NONFATAL(!ret.nsat.has_sig); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1413 | 0 | if (node.GetType() << "d"_mst && !ret.nsat.malleable) CHECK_NONFATAL(!ret.nsat.non_canon); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "d"_mst && !ret.nsat.malleable) CHECK_NONFATAL(!ret.nsat.non_canon); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "d"_mst && !ret.nsat.malleable) CHECK_NONFATAL(!ret.nsat.non_canon); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1414 | | |
1415 | | // For 'f'/'s' nodes, dissatisfactions/satisfactions must have a signature. |
1416 | 0 | if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.has_sig); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.has_sig); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "f"_mst && ret.nsat.available != Availability::NO) CHECK_NONFATAL(ret.nsat.has_sig); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1417 | 0 | if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.has_sig); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.has_sig); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "s"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(ret.sat.has_sig); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1418 | | |
1419 | | // For non-malleable 'e' nodes, a non-malleable dissatisfaction must exist. |
1420 | 0 | if (node.GetType() << "me"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "me"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "me"_mst) CHECK_NONFATAL(ret.nsat.available != Availability::NO); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1421 | 0 | if (node.GetType() << "me"_mst) CHECK_NONFATAL(!ret.nsat.malleable); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "me"_mst) CHECK_NONFATAL(!ret.nsat.malleable); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "me"_mst) CHECK_NONFATAL(!ret.nsat.malleable); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1422 | | |
1423 | | // For 'm' nodes, if a satisfaction exists, it must be non-malleable. |
1424 | 0 | if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.malleable); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.malleable); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (node.GetType() << "m"_mst && ret.sat.available != Availability::NO) CHECK_NONFATAL(!ret.sat.malleable); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1425 | | |
1426 | | // If a non-malleable satisfaction exists, it must be canonical. |
1427 | 0 | if (ret.sat.available != Availability::NO && !ret.sat.malleable) CHECK_NONFATAL(!ret.sat.non_canon); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (ret.sat.available != Availability::NO && !ret.sat.malleable) CHECK_NONFATAL(!ret.sat.non_canon); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| if (ret.sat.available != Availability::NO && !ret.sat.malleable) CHECK_NONFATAL(!ret.sat.non_canon); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1428 | |
|
1429 | 0 | return ret; |
1430 | 0 | }; Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE12ProduceInputIN12_GLOBAL__N_116SatisfierContextEEENS_8internal11InputResultERKT_ENKUlRKS2_NSt3__14spanIS7_Lm18446744073709551615EEEE0_clESC_SF_ Unexecuted instantiation: _ZZNK10miniscript4NodeI11XOnlyPubKeyE12ProduceInputI12TapSatisfierEENS_8internal11InputResultERKT_ENKUlRKS2_NSt3__14spanIS6_Lm18446744073709551615EEEE0_clESB_SE_ Unexecuted instantiation: _ZZNK10miniscript4NodeI7CPubKeyE12ProduceInputI12WshSatisfierEENS_8internal11InputResultERKT_ENKUlRKS2_NSt3__14spanIS6_Lm18446744073709551615EEEE0_clESB_SE_ |
1431 | |
|
1432 | 0 | return TreeEval<InputResult>(tester); |
1433 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE12ProduceInputIN12_GLOBAL__N_116SatisfierContextEEENS_8internal11InputResultERKT_ Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE12ProduceInputI12TapSatisfierEENS_8internal11InputResultERKT_ Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE12ProduceInputI12WshSatisfierEENS_8internal11InputResultERKT_ |
1434 | | |
1435 | | public: |
1436 | | /** Update duplicate key information in this Node. |
1437 | | * |
1438 | | * This uses a custom key comparator provided by the context in order to still detect duplicates |
1439 | | * for more complicated types. |
1440 | | */ |
1441 | | template<typename Ctx> void DuplicateKeyCheck(const Ctx& ctx) const |
1442 | 0 | { |
1443 | | // We cannot use a lambda here, as lambdas are non assignable, and the set operations |
1444 | | // below require moving the comparators around. |
1445 | 0 | struct Comp { |
1446 | 0 | const Ctx* ctx_ptr; |
1447 | 0 | Comp(const Ctx& ctx) : ctx_ptr(&ctx) {} Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckIN12_GLOBAL__N_113ParserContextEEEvRKT_EN4CompC2ERKS5_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckIN12_GLOBAL__N_113KeyComparatorEEEvRKT_EN4CompC2ERKS5_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE17DuplicateKeyCheckIS2_EEvRKT_EN4CompC2ERKS2_ Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE17DuplicateKeyCheckIN12_GLOBAL__N_19KeyParserEEEvRKT_EN4CompC2ERKS4_ Unexecuted instantiation: _ZZNK10miniscript4NodeI11XOnlyPubKeyE17DuplicateKeyCheckI12TapSatisfierEEvRKT_EN4CompC2ERKS4_ Unexecuted instantiation: _ZZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckI12WshSatisfierEEvRKT_EN4CompC2ERKS4_ |
1448 | 0 | bool operator()(const Key& a, const Key& b) const { return ctx_ptr->KeyCompare(a, b); } Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckIN12_GLOBAL__N_113ParserContextEEEvRKT_ENK4CompclERKS1_SB_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckIN12_GLOBAL__N_113KeyComparatorEEEvRKT_ENK4CompclERKS1_SB_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE17DuplicateKeyCheckIS2_EEvRKT_ENK4CompclERKS3_SB_ Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE17DuplicateKeyCheckIN12_GLOBAL__N_19KeyParserEEEvRKT_ENK4CompclERKjSA_ Unexecuted instantiation: _ZZNK10miniscript4NodeI11XOnlyPubKeyE17DuplicateKeyCheckI12TapSatisfierEEvRKT_ENK4CompclERKS1_SA_ Unexecuted instantiation: _ZZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckI12WshSatisfierEEvRKT_ENK4CompclERKS1_SA_ |
1449 | 0 | }; |
1450 | | |
1451 | | // state in the recursive computation: |
1452 | | // - std::nullopt means "this node has duplicates" |
1453 | | // - an std::set means "this node has no duplicate keys, and they are: ...". |
1454 | 0 | using keyset = std::set<Key, Comp>; |
1455 | 0 | using state = std::optional<keyset>; |
1456 | |
|
1457 | 0 | auto upfn = [&ctx](const Node& node, std::span<state> subs) -> state { |
1458 | | // If this node is already known to have duplicates, nothing left to do. |
1459 | 0 | if (node.has_duplicate_keys.has_value() && *node.has_duplicate_keys) return {}; |
1460 | | |
1461 | | // Check if one of the children is already known to have duplicates. |
1462 | 0 | for (auto& sub : subs) { |
1463 | 0 | if (!sub.has_value()) { |
1464 | 0 | node.has_duplicate_keys = true; |
1465 | 0 | return {}; |
1466 | 0 | } |
1467 | 0 | } |
1468 | | |
1469 | | // Start building the set of keys involved in this node and children. |
1470 | | // Start by keys in this node directly. |
1471 | 0 | size_t keys_count = node.keys.size(); |
1472 | 0 | keyset key_set{node.keys.begin(), node.keys.end(), Comp(ctx)}; |
1473 | 0 | if (key_set.size() != keys_count) { |
1474 | | // It already has duplicates; bail out. |
1475 | 0 | node.has_duplicate_keys = true; |
1476 | 0 | return {}; |
1477 | 0 | } |
1478 | | |
1479 | | // Merge the keys from the children into this set. |
1480 | 0 | for (auto& sub : subs) { |
1481 | 0 | keys_count += sub->size(); |
1482 | | // Small optimization: std::set::merge is linear in the size of the second arg but |
1483 | | // logarithmic in the size of the first. |
1484 | 0 | if (key_set.size() < sub->size()) std::swap(key_set, *sub); |
1485 | 0 | key_set.merge(*sub); |
1486 | 0 | if (key_set.size() != keys_count) { |
1487 | 0 | node.has_duplicate_keys = true; |
1488 | 0 | return {}; |
1489 | 0 | } |
1490 | 0 | } |
1491 | | |
1492 | 0 | node.has_duplicate_keys = false; |
1493 | 0 | return key_set; |
1494 | 0 | }; Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckIN12_GLOBAL__N_113ParserContextEEEvRKT_ENKUlRKS2_NSt3__14spanINSB_8optionalINSB_3setIS1_ZNKS3_IS5_EEvS8_E4CompNSB_9allocatorIS1_EEEEEELm18446744073709551615EEEE_clESA_SK_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckIN12_GLOBAL__N_113KeyComparatorEEEvRKT_ENKUlRKS2_NSt3__14spanINSB_8optionalINSB_3setIS1_ZNKS3_IS5_EEvS8_E4CompNSB_9allocatorIS1_EEEEEELm18446744073709551615EEEE_clESA_SK_ Unexecuted instantiation: miniscript.cpp:_ZZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE17DuplicateKeyCheckIS2_EEvRKT_ENKUlRKS4_NSt3__14spanINSB_8optionalINSB_3setIS3_ZNKS5_IS2_EEvS8_E4CompNSB_9allocatorIS3_EEEEEELm18446744073709551615EEEE_clESA_SK_ Unexecuted instantiation: descriptor.cpp:_ZZNK10miniscript4NodeIjE17DuplicateKeyCheckIN12_GLOBAL__N_19KeyParserEEEvRKT_ENKUlRKS1_NSt3__14spanINSA_8optionalINSA_3setIjZNKS2_IS4_EEvS7_E4CompNSA_9allocatorIjEEEEEELm18446744073709551615EEEE_clES9_SJ_ Unexecuted instantiation: _ZZNK10miniscript4NodeI11XOnlyPubKeyE17DuplicateKeyCheckI12TapSatisfierEEvRKT_ENKUlRKS2_NSt3__14spanINSA_8optionalINSA_3setIS1_ZNKS3_IS4_EEvS7_E4CompNSA_9allocatorIS1_EEEEEELm18446744073709551615EEEE_clES9_SJ_ Unexecuted instantiation: _ZZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckI12WshSatisfierEEvRKT_ENKUlRKS2_NSt3__14spanINSA_8optionalINSA_3setIS1_ZNKS3_IS4_EEvS7_E4CompNSA_9allocatorIS1_EEEEEELm18446744073709551615EEEE_clES9_SJ_ |
1495 | |
|
1496 | 0 | TreeEval<state>(upfn); |
1497 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckIN12_GLOBAL__N_113ParserContextEEEvRKT_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckIN12_GLOBAL__N_113KeyComparatorEEEvRKT_ Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE17DuplicateKeyCheckIS2_EEvRKT_ Unexecuted instantiation: descriptor.cpp:_ZNK10miniscript4NodeIjE17DuplicateKeyCheckIN12_GLOBAL__N_19KeyParserEEEvRKT_ Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE17DuplicateKeyCheckI12TapSatisfierEEvRKT_ Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE17DuplicateKeyCheckI12WshSatisfierEEvRKT_ |
1498 | | |
1499 | | //! Return the size of the script for this expression (faster than ToScript().size()). |
1500 | 0 | size_t ScriptSize() const { return scriptlen; } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE10ScriptSizeEv Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE10ScriptSizeEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE10ScriptSizeEv Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE10ScriptSizeEv |
1501 | | |
1502 | | //! Return the maximum number of ops needed to satisfy this script non-malleably. |
1503 | 0 | std::optional<uint32_t> GetOps() const { |
1504 | 0 | if (!ops.sat.valid) return {}; |
1505 | 0 | return ops.count + ops.sat.value; |
1506 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE6GetOpsEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE6GetOpsEv |
1507 | | |
1508 | | //! Return the number of ops in the script (not counting the dynamic ones that depend on execution). |
1509 | 0 | uint32_t GetStaticOps() const { return ops.count; } |
1510 | | |
1511 | | //! Check the ops limit of this script against the consensus limit. |
1512 | 0 | bool CheckOpsLimit() const { |
1513 | 0 | if (IsTapscript(m_script_ctx)) return true; |
1514 | 0 | if (const auto ops = GetOps()) return *ops <= MAX_OPS_PER_SCRIPT; |
1515 | 0 | return true; |
1516 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE13CheckOpsLimitEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE13CheckOpsLimitEv |
1517 | | |
1518 | | /** Whether this node is of type B, K or W. (That is, anything but V.) */ |
1519 | 0 | bool IsBKW() const { |
1520 | 0 | return !((GetType() & "BKW"_mst) == ""_mst); |
1521 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE5IsBKWEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE5IsBKWEv |
1522 | | |
1523 | | /** Return the maximum number of stack elements needed to satisfy this script non-malleably. */ |
1524 | 0 | std::optional<uint32_t> GetStackSize() const { |
1525 | 0 | if (!ss.sat.valid) return {}; |
1526 | 0 | return ss.sat.netdiff + static_cast<int32_t>(IsBKW()); |
1527 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE12GetStackSizeEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE12GetStackSizeEv |
1528 | | |
1529 | | //! Return the maximum size of the stack during execution of this script. |
1530 | 0 | std::optional<uint32_t> GetExecStackSize() const { |
1531 | 0 | if (!ss.sat.valid) return {}; |
1532 | 0 | return ss.sat.exec + static_cast<int32_t>(IsBKW()); |
1533 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE16GetExecStackSizeEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE16GetExecStackSizeEv |
1534 | | |
1535 | | //! Check the maximum stack size for this script against the policy limit. |
1536 | 0 | bool CheckStackSize() const { |
1537 | | // Since in Tapscript there is no standardness limit on the script and witness sizes, we may run |
1538 | | // into the maximum stack size while executing the script. Make sure it doesn't happen. |
1539 | 0 | if (IsTapscript(m_script_ctx)) { |
1540 | 0 | if (const auto exec_ss = GetExecStackSize()) return exec_ss <= MAX_STACK_SIZE; |
1541 | 0 | return true; |
1542 | 0 | } |
1543 | 0 | if (const auto ss = GetStackSize()) return *ss <= MAX_STANDARD_P2WSH_STACK_ITEMS; |
1544 | 0 | return true; |
1545 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE14CheckStackSizeEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE14CheckStackSizeEv |
1546 | | |
1547 | | //! Whether no satisfaction exists for this node. |
1548 | 0 | bool IsNotSatisfiable() const { return !GetStackSize(); } |
1549 | | |
1550 | | /** Return the maximum size in bytes of a witness to satisfy this script non-malleably. Note this does |
1551 | | * not include the witness script push. */ |
1552 | 0 | std::optional<uint32_t> GetWitnessSize() const { |
1553 | 0 | if (!ws.sat.valid) return {}; |
1554 | 0 | return ws.sat.value; |
1555 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE14GetWitnessSizeEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE14GetWitnessSizeEv |
1556 | | |
1557 | | //! Return the expression type. |
1558 | 0 | Type GetType() const { return typ; } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE7GetTypeEv Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE7GetTypeEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE7GetTypeEv Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE7GetTypeEv |
1559 | | |
1560 | | //! Return the script context for this node. |
1561 | 0 | MiniscriptContext GetMsCtx() const { return m_script_ctx; } |
1562 | | |
1563 | | //! Find an insane subnode which has no insane children. Nullptr if there is none. |
1564 | 0 | const Node* FindInsaneSub() const { |
1565 | 0 | return TreeEval<const Node*>([](const Node& node, std::span<const Node*> subs) -> const Node* { |
1566 | 0 | for (auto& sub: subs) if (sub) return sub; |
1567 | 0 | if (!node.IsSaneSubexpression()) return &node; |
1568 | 0 | return nullptr; |
1569 | 0 | }); |
1570 | 0 | } |
1571 | | |
1572 | | //! Determine whether a Miniscript node is satisfiable. fn(node) will be invoked for all |
1573 | | //! key, time, and hashing nodes, and should return their satisfiability. |
1574 | | template<typename F> |
1575 | | bool IsSatisfiable(F fn) const |
1576 | 0 | { |
1577 | | // TreeEval() doesn't support bool as NodeType, so use int instead. |
1578 | 0 | return TreeEval<int>([&fn](const Node& node, std::span<int> subs) -> bool { |
1579 | 0 | switch (node.fragment) { |
1580 | 0 | case Fragment::JUST_0: |
1581 | 0 | return false; |
1582 | 0 | case Fragment::JUST_1: |
1583 | 0 | return true; |
1584 | 0 | case Fragment::PK_K: |
1585 | 0 | case Fragment::PK_H: |
1586 | 0 | case Fragment::MULTI: |
1587 | 0 | case Fragment::MULTI_A: |
1588 | 0 | case Fragment::AFTER: |
1589 | 0 | case Fragment::OLDER: |
1590 | 0 | case Fragment::HASH256: |
1591 | 0 | case Fragment::HASH160: |
1592 | 0 | case Fragment::SHA256: |
1593 | 0 | case Fragment::RIPEMD160: |
1594 | 0 | return bool{fn(node)}; |
1595 | 0 | case Fragment::ANDOR: |
1596 | 0 | return (subs[0] && subs[1]) || subs[2]; |
1597 | 0 | case Fragment::AND_V: |
1598 | 0 | case Fragment::AND_B: |
1599 | 0 | return subs[0] && subs[1]; |
1600 | 0 | case Fragment::OR_B: |
1601 | 0 | case Fragment::OR_C: |
1602 | 0 | case Fragment::OR_D: |
1603 | 0 | case Fragment::OR_I: |
1604 | 0 | return subs[0] || subs[1]; |
1605 | 0 | case Fragment::THRESH: |
1606 | 0 | return static_cast<uint32_t>(std::count(subs.begin(), subs.end(), true)) >= node.k; |
1607 | 0 | default: // wrappers |
1608 | 0 | assert(subs.size() >= 1); |
1609 | 0 | CHECK_NONFATAL(subs.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
1610 | 0 | return subs[0]; |
1611 | 0 | } |
1612 | 0 | }); |
1613 | 0 | } |
1614 | | |
1615 | | //! Check whether this node is valid at all. |
1616 | 0 | bool IsValid() const { |
1617 | 0 | if (GetType() == ""_mst) return false; |
1618 | 0 | return ScriptSize() <= internal::MaxScriptSize(m_script_ctx); |
1619 | 0 | } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE7IsValidEv Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE7IsValidEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE7IsValidEv Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE7IsValidEv |
1620 | | |
1621 | | //! Check whether this node is valid as a script on its own. |
1622 | 0 | bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE15IsValidTopLevelEv Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEE15IsValidTopLevelEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE15IsValidTopLevelEv Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE15IsValidTopLevelEv |
1623 | | |
1624 | | //! Check whether this script can always be satisfied in a non-malleable way. |
1625 | 0 | bool IsNonMalleable() const { return GetType() << "m"_mst; } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE14IsNonMalleableEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE14IsNonMalleableEv |
1626 | | |
1627 | | //! Check whether this script always needs a signature. |
1628 | 0 | bool NeedsSignature() const { return GetType() << "s"_mst; } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE14NeedsSignatureEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE14NeedsSignatureEv |
1629 | | |
1630 | | //! Check whether there is no satisfaction path that contains both timelocks and heightlocks |
1631 | 0 | bool CheckTimeLocksMix() const { return GetType() << "k"_mst; } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE17CheckTimeLocksMixEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE17CheckTimeLocksMixEv |
1632 | | |
1633 | | //! Check whether there is no duplicate key across this fragment and all its sub-fragments. |
1634 | 0 | bool CheckDuplicateKey() const { return has_duplicate_keys && !*has_duplicate_keys; } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE17CheckDuplicateKeyEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE17CheckDuplicateKeyEv |
1635 | | |
1636 | | //! Whether successful non-malleable satisfactions are guaranteed to be valid. |
1637 | 0 | bool ValidSatisfactions() const { return IsValid() && CheckOpsLimit() && CheckStackSize(); } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE18ValidSatisfactionsEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE18ValidSatisfactionsEv |
1638 | | |
1639 | | //! Whether the apparent policy of this node matches its script semantics. Doesn't guarantee it is a safe script on its own. |
1640 | 0 | bool IsSaneSubexpression() const { return ValidSatisfactions() && IsNonMalleable() && CheckTimeLocksMix() && CheckDuplicateKey(); } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE19IsSaneSubexpressionEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE19IsSaneSubexpressionEv |
1641 | | |
1642 | | //! Check whether this node is safe as a script on its own. |
1643 | 0 | bool IsSane() const { return IsValidTopLevel() && IsSaneSubexpression() && NeedsSignature(); } Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE6IsSaneEv Unexecuted instantiation: _ZNK10miniscript4NodeIjE6IsSaneEv |
1644 | | |
1645 | | //! Produce a witness for this script, if possible and given the information available in the context. |
1646 | | //! The non-malleable satisfaction is guaranteed to be valid if it exists, and ValidSatisfaction() |
1647 | | //! is true. If IsSane() holds, this satisfaction is guaranteed to succeed in case the node's |
1648 | | //! conditions are satisfied (private keys and hash preimages available, locktimes satisfied). |
1649 | | template<typename Ctx> |
1650 | 0 | Availability Satisfy(const Ctx& ctx, std::vector<std::vector<unsigned char>>& stack, bool nonmalleable = true) const { |
1651 | 0 | auto ret = ProduceInput(ctx); |
1652 | 0 | if (nonmalleable && (ret.sat.malleable || !ret.sat.has_sig)) return Availability::NO; |
1653 | 0 | stack = std::move(ret.sat.stack); |
1654 | 0 | return ret.sat.available; |
1655 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZNK10miniscript4NodeI7CPubKeyE7SatisfyIN12_GLOBAL__N_116SatisfierContextEEENS_12AvailabilityERKT_RNSt3__16vectorINSB_IhNSA_9allocatorIhEEEENSC_ISE_EEEEb Unexecuted instantiation: _ZNK10miniscript4NodeI11XOnlyPubKeyE7SatisfyI12TapSatisfierEENS_12AvailabilityERKT_RNSt3__16vectorINSA_IhNS9_9allocatorIhEEEENSB_ISD_EEEEb Unexecuted instantiation: _ZNK10miniscript4NodeI7CPubKeyE7SatisfyI12WshSatisfierEENS_12AvailabilityERKT_RNSt3__16vectorINSA_IhNS9_9allocatorIhEEEENSB_ISD_EEEEb |
1656 | | |
1657 | | //! Equality testing. |
1658 | 0 | bool operator==(const Node<Key>& arg) const { return Compare(*this, arg) == 0; } |
1659 | | |
1660 | | // Constructors with various argument combinations, which bypass the duplicate key check. |
1661 | | Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0) |
1662 | 0 | : fragment(nt), k(val), data(std::move(arg)), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} |
1663 | | Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0) |
1664 | 0 | : fragment(nt), k(val), data(std::move(arg)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} Unexecuted instantiation: _ZN10miniscript4NodeI7CPubKeyEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIhNS7_9allocatorIhEEEEj Unexecuted instantiation: miniscript.cpp:_ZN10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIhNS9_9allocatorIhEEEEj Unexecuted instantiation: _ZN10miniscript4NodeIjEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIhNS6_9allocatorIhEEEEj Unexecuted instantiation: _ZN10miniscript4NodeI11XOnlyPubKeyEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIhNS7_9allocatorIhEEEEj |
1665 | | Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0) |
1666 | | : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} |
1667 | | Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0) |
1668 | 0 | : fragment(nt), k(val), keys(std::move(key)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} Unexecuted instantiation: _ZN10miniscript4NodeI7CPubKeyEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIS1_NS7_9allocatorIS1_EEEEj Unexecuted instantiation: miniscript.cpp:_ZN10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIS3_NS9_9allocatorIS3_EEEEj Unexecuted instantiation: _ZN10miniscript4NodeIjEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIjNS6_9allocatorIjEEEEj Unexecuted instantiation: _ZN10miniscript4NodeI11XOnlyPubKeyEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorIS1_NS7_9allocatorIS1_EEEEj |
1669 | | Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0) |
1670 | 0 | : fragment(nt), k(val), subs(std::move(sub)), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} Unexecuted instantiation: _ZN10miniscript4NodeI7CPubKeyEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS7_10unique_ptrIKS2_NS7_14default_deleteISA_EEEENS7_9allocatorISD_EEEEj Unexecuted instantiation: miniscript.cpp:_ZN10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS9_10unique_ptrIKS4_NS9_14default_deleteISC_EEEENS9_9allocatorISF_EEEEj Unexecuted instantiation: _ZN10miniscript4NodeIjEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS6_10unique_ptrIKS1_NS6_14default_deleteIS9_EEEENS6_9allocatorISC_EEEEj Unexecuted instantiation: _ZN10miniscript4NodeI11XOnlyPubKeyEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentENSt3__16vectorINS7_10unique_ptrIKS2_NS7_14default_deleteISA_EEEENS7_9allocatorISD_EEEEj |
1671 | | Node(internal::NoDupCheck, MiniscriptContext script_ctx, Fragment nt, uint32_t val = 0) |
1672 | 0 | : fragment(nt), k(val), m_script_ctx{script_ctx}, ops(CalcOps()), ss(CalcStackSize()), ws(CalcWitnessSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {} Unexecuted instantiation: _ZN10miniscript4NodeI7CPubKeyEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentEj Unexecuted instantiation: miniscript.cpp:_ZN10miniscript4NodeIN12_GLOBAL__N_119ScriptParserContext3KeyEEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentEj Unexecuted instantiation: _ZN10miniscript4NodeIjEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentEj Unexecuted instantiation: _ZN10miniscript4NodeI11XOnlyPubKeyEC2ENS_8internal10NoDupCheckENS_17MiniscriptContextENS_8FragmentEj |
1673 | | |
1674 | | // Constructors with various argument combinations, which do perform the duplicate key check. |
1675 | | template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0) |
1676 | | : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(arg), val) { DuplicateKeyCheck(ctx); } |
1677 | | template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0) |
1678 | | : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(arg), val) { DuplicateKeyCheck(ctx);} |
1679 | | template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0) |
1680 | | : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), std::move(key), val) { DuplicateKeyCheck(ctx); } |
1681 | | template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<Key> key, uint32_t val = 0) |
1682 | | : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(key), val) { DuplicateKeyCheck(ctx); } |
1683 | | template <typename Ctx> Node(const Ctx& ctx, Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0) |
1684 | | : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, std::move(sub), val) { DuplicateKeyCheck(ctx); } |
1685 | | template <typename Ctx> Node(const Ctx& ctx, Fragment nt, uint32_t val = 0) |
1686 | | : Node(internal::NoDupCheck{}, ctx.MsContext(), nt, val) { DuplicateKeyCheck(ctx); } |
1687 | | |
1688 | | // Delete copy constructor and assignment operator, use Clone() instead |
1689 | | Node(const Node&) = delete; |
1690 | | Node& operator=(const Node&) = delete; |
1691 | | }; |
1692 | | |
1693 | | namespace internal { |
1694 | | |
1695 | | enum class ParseContext { |
1696 | | /** An expression which may be begin with wrappers followed by a colon. */ |
1697 | | WRAPPED_EXPR, |
1698 | | /** A miniscript expression which does not begin with wrappers. */ |
1699 | | EXPR, |
1700 | | |
1701 | | /** SWAP wraps the top constructed node with s: */ |
1702 | | SWAP, |
1703 | | /** ALT wraps the top constructed node with a: */ |
1704 | | ALT, |
1705 | | /** CHECK wraps the top constructed node with c: */ |
1706 | | CHECK, |
1707 | | /** DUP_IF wraps the top constructed node with d: */ |
1708 | | DUP_IF, |
1709 | | /** VERIFY wraps the top constructed node with v: */ |
1710 | | VERIFY, |
1711 | | /** NON_ZERO wraps the top constructed node with j: */ |
1712 | | NON_ZERO, |
1713 | | /** ZERO_NOTEQUAL wraps the top constructed node with n: */ |
1714 | | ZERO_NOTEQUAL, |
1715 | | /** WRAP_U will construct an or_i(X,0) node from the top constructed node. */ |
1716 | | WRAP_U, |
1717 | | /** WRAP_T will construct an and_v(X,1) node from the top constructed node. */ |
1718 | | WRAP_T, |
1719 | | |
1720 | | /** AND_N will construct an andor(X,Y,0) node from the last two constructed nodes. */ |
1721 | | AND_N, |
1722 | | /** AND_V will construct an and_v node from the last two constructed nodes. */ |
1723 | | AND_V, |
1724 | | /** AND_B will construct an and_b node from the last two constructed nodes. */ |
1725 | | AND_B, |
1726 | | /** ANDOR will construct an andor node from the last three constructed nodes. */ |
1727 | | ANDOR, |
1728 | | /** OR_B will construct an or_b node from the last two constructed nodes. */ |
1729 | | OR_B, |
1730 | | /** OR_C will construct an or_c node from the last two constructed nodes. */ |
1731 | | OR_C, |
1732 | | /** OR_D will construct an or_d node from the last two constructed nodes. */ |
1733 | | OR_D, |
1734 | | /** OR_I will construct an or_i node from the last two constructed nodes. */ |
1735 | | OR_I, |
1736 | | |
1737 | | /** THRESH will read a wrapped expression, and then look for a COMMA. If |
1738 | | * no comma follows, it will construct a thresh node from the appropriate |
1739 | | * number of constructed children. Otherwise, it will recurse with another |
1740 | | * THRESH. */ |
1741 | | THRESH, |
1742 | | |
1743 | | /** COMMA expects the next element to be ',' and fails if not. */ |
1744 | | COMMA, |
1745 | | /** CLOSE_BRACKET expects the next element to be ')' and fails if not. */ |
1746 | | CLOSE_BRACKET, |
1747 | | }; |
1748 | | |
1749 | | int FindNextChar(std::span<const char> in, const char m); |
1750 | | |
1751 | | /** Parse a key string ending at the end of the fragment's text representation. */ |
1752 | | template<typename Key, typename Ctx> |
1753 | | std::optional<std::pair<Key, int>> ParseKeyEnd(std::span<const char> in, const Ctx& ctx) |
1754 | 0 | { |
1755 | 0 | int key_size = FindNextChar(in, ')'); |
1756 | 0 | if (key_size < 1) return {}; |
1757 | 0 | auto key = ctx.FromString(in.begin(), in.begin() + key_size); |
1758 | 0 | if (!key) return {}; |
1759 | 0 | return {{std::move(*key), key_size}}; |
1760 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZN10miniscript8internal11ParseKeyEndI7CPubKeyN12_GLOBAL__N_113ParserContextEEENSt3__18optionalINS5_4pairIT_iEEEENS5_4spanIKcLm18446744073709551615EEERKT0_ Unexecuted instantiation: descriptor.cpp:_ZN10miniscript8internal11ParseKeyEndIjN12_GLOBAL__N_19KeyParserEEENSt3__18optionalINS4_4pairIT_iEEEENS4_4spanIKcLm18446744073709551615EEERKT0_ |
1761 | | |
1762 | | /** Parse a hex string ending at the end of the fragment's text representation. */ |
1763 | | template<typename Ctx> |
1764 | | std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(std::span<const char> in, const size_t expected_size, |
1765 | | const Ctx& ctx) |
1766 | 0 | { |
1767 | 0 | int hash_size = FindNextChar(in, ')'); |
1768 | 0 | if (hash_size < 1) return {}; |
1769 | 0 | std::string val = std::string(in.begin(), in.begin() + hash_size); |
1770 | 0 | if (!IsHex(val)) return {}; |
1771 | 0 | auto hash = ParseHex(val); |
1772 | 0 | if (hash.size() != expected_size) return {}; |
1773 | 0 | return {{std::move(hash), hash_size}}; |
1774 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZN10miniscript8internal14ParseHexStrEndIN12_GLOBAL__N_113ParserContextEEENSt3__18optionalINS4_4pairINS4_6vectorIhNS4_9allocatorIhEEEEiEEEENS4_4spanIKcLm18446744073709551615EEEmRKT_ Unexecuted instantiation: descriptor.cpp:_ZN10miniscript8internal14ParseHexStrEndIN12_GLOBAL__N_19KeyParserEEENSt3__18optionalINS4_4pairINS4_6vectorIhNS4_9allocatorIhEEEEiEEEENS4_4spanIKcLm18446744073709551615EEEmRKT_ |
1775 | | |
1776 | | /** BuildBack pops the last two elements off `constructed` and wraps them in the specified Fragment */ |
1777 | | template<typename Key> |
1778 | | void BuildBack(const MiniscriptContext script_ctx, Fragment nt, std::vector<NodeRef<Key>>& constructed, const bool reverse = false) |
1779 | 0 | { |
1780 | 0 | NodeRef<Key> child = std::move(constructed.back()); |
1781 | 0 | constructed.pop_back(); |
1782 | 0 | if (reverse) { |
1783 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(child), std::move(constructed.back()))); |
1784 | 0 | } else { |
1785 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, script_ctx, nt, Vector(std::move(constructed.back()), std::move(child))); |
1786 | 0 | } |
1787 | 0 | } Unexecuted instantiation: _ZN10miniscript8internal9BuildBackI7CPubKeyEEvNS_17MiniscriptContextENS_8FragmentERNSt3__16vectorINS5_10unique_ptrIKNS_4NodeIT_EENS5_14default_deleteISB_EEEENS5_9allocatorISE_EEEEb Unexecuted instantiation: miniscript.cpp:_ZN10miniscript8internal9BuildBackIN12_GLOBAL__N_119ScriptParserContext3KeyEEEvNS_17MiniscriptContextENS_8FragmentERNSt3__16vectorINS7_10unique_ptrIKNS_4NodeIT_EENS7_14default_deleteISD_EEEENS7_9allocatorISG_EEEEb Unexecuted instantiation: _ZN10miniscript8internal9BuildBackIjEEvNS_17MiniscriptContextENS_8FragmentERNSt3__16vectorINS4_10unique_ptrIKNS_4NodeIT_EENS4_14default_deleteISA_EEEENS4_9allocatorISD_EEEEb Unexecuted instantiation: _ZN10miniscript8internal9BuildBackI11XOnlyPubKeyEEvNS_17MiniscriptContextENS_8FragmentERNSt3__16vectorINS5_10unique_ptrIKNS_4NodeIT_EENS5_14default_deleteISB_EEEENS5_9allocatorISE_EEEEb |
1788 | | |
1789 | | /** |
1790 | | * Parse a miniscript from its textual descriptor form. |
1791 | | * This does not check whether the script is valid, let alone sane. The caller is expected to use |
1792 | | * the `IsValidTopLevel()` and `IsSaneTopLevel()` to check for these properties on the node. |
1793 | | */ |
1794 | | template<typename Key, typename Ctx> |
1795 | | inline NodeRef<Key> Parse(std::span<const char> in, const Ctx& ctx) |
1796 | 0 | { |
1797 | 0 | using namespace script; |
1798 | | |
1799 | | // Account for the minimum script size for all parsed fragments so far. It "borrows" 1 |
1800 | | // script byte from all leaf nodes, counting it instead whenever a space for a recursive |
1801 | | // expression is added (through andor, and_*, or_*, thresh). This guarantees that all fragments |
1802 | | // increment the script_size by at least one, except for: |
1803 | | // - "0", "1": these leafs are only a single byte, so their subtracted-from increment is 0. |
1804 | | // This is not an issue however, as "space" for them has to be created by combinators, |
1805 | | // which do increment script_size. |
1806 | | // - "v:": the v wrapper adds nothing as in some cases it results in no opcode being added |
1807 | | // (instead transforming another opcode into its VERIFY form). However, the v: wrapper has |
1808 | | // to be interleaved with other fragments to be valid, so this is not a concern. |
1809 | 0 | size_t script_size{1}; |
1810 | 0 | size_t max_size{internal::MaxScriptSize(ctx.MsContext())}; |
1811 | | |
1812 | | // The two integers are used to hold state for thresh() |
1813 | 0 | std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse; |
1814 | 0 | std::vector<NodeRef<Key>> constructed; |
1815 | |
|
1816 | 0 | to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); |
1817 | | |
1818 | | // Parses a multi() or multi_a() from its string representation. Returns false on parsing error. |
1819 | 0 | const auto parse_multi_exp = [&](std::span<const char>& in, const bool is_multi_a) -> bool { |
1820 | 0 | const auto max_keys{is_multi_a ? MAX_PUBKEYS_PER_MULTI_A : MAX_PUBKEYS_PER_MULTISIG}; |
1821 | 0 | const auto required_ctx{is_multi_a ? MiniscriptContext::TAPSCRIPT : MiniscriptContext::P2WSH}; |
1822 | 0 | if (ctx.MsContext() != required_ctx) return false; |
1823 | | // Get threshold |
1824 | 0 | int next_comma = FindNextChar(in, ','); |
1825 | 0 | if (next_comma < 1) return false; |
1826 | 0 | const auto k_to_integral{ToIntegral<int64_t>(std::string_view(in.data(), next_comma))}; |
1827 | 0 | if (!k_to_integral.has_value()) return false; |
1828 | 0 | const int64_t k{k_to_integral.value()}; |
1829 | 0 | in = in.subspan(next_comma + 1); |
1830 | | // Get keys. It is compatible for both compressed and x-only keys. |
1831 | 0 | std::vector<Key> keys; |
1832 | 0 | while (next_comma != -1) { |
1833 | 0 | next_comma = FindNextChar(in, ','); |
1834 | 0 | int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma; |
1835 | 0 | if (key_length < 1) return false; |
1836 | 0 | auto key = ctx.FromString(in.begin(), in.begin() + key_length); |
1837 | 0 | if (!key) return false; |
1838 | 0 | keys.push_back(std::move(*key)); |
1839 | 0 | in = in.subspan(key_length + 1); |
1840 | 0 | } |
1841 | 0 | if (keys.size() < 1 || keys.size() > max_keys) return false; |
1842 | 0 | if (k < 1 || k > (int64_t)keys.size()) return false; |
1843 | 0 | if (is_multi_a) { |
1844 | | // (push + xonly-key + CHECKSIG[ADD]) * n + k + OP_NUMEQUAL(VERIFY), minus one. |
1845 | 0 | script_size += (1 + 32 + 1) * keys.size() + BuildScript(k).size(); |
1846 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), k)); |
1847 | 0 | } else { |
1848 | 0 | script_size += 2 + (keys.size() > 16) + (k > 16) + 34 * keys.size(); |
1849 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), k)); |
1850 | 0 | } |
1851 | 0 | return true; |
1852 | 0 | }; Unexecuted instantiation: miniscript.cpp:_ZZN10miniscript8internal5ParseI7CPubKeyN12_GLOBAL__N_113ParserContextEEENSt3__110unique_ptrIKNS_4NodeIT_EENS5_14default_deleteISA_EEEENS5_4spanIKcLm18446744073709551615EEERKT0_ENKUlRSG_bE_clESK_b Unexecuted instantiation: descriptor.cpp:_ZZN10miniscript8internal5ParseIjN12_GLOBAL__N_19KeyParserEEENSt3__110unique_ptrIKNS_4NodeIT_EENS4_14default_deleteIS9_EEEENS4_4spanIKcLm18446744073709551615EEERKT0_ENKUlRSF_bE_clESJ_b |
1853 | |
|
1854 | 0 | while (!to_parse.empty()) { |
1855 | 0 | if (script_size > max_size) return {}; |
1856 | | |
1857 | | // Get the current context we are decoding within |
1858 | 0 | auto [cur_context, n, k] = to_parse.back(); |
1859 | 0 | to_parse.pop_back(); |
1860 | |
|
1861 | 0 | switch (cur_context) { |
1862 | 0 | case ParseContext::WRAPPED_EXPR: { |
1863 | 0 | std::optional<size_t> colon_index{}; |
1864 | 0 | for (size_t i = 1; i < in.size(); ++i) { |
1865 | 0 | if (in[i] == ':') { |
1866 | 0 | colon_index = i; |
1867 | 0 | break; |
1868 | 0 | } |
1869 | 0 | if (in[i] < 'a' || in[i] > 'z') break; |
1870 | 0 | } |
1871 | | // If there is no colon, this loop won't execute |
1872 | 0 | bool last_was_v{false}; |
1873 | 0 | for (size_t j = 0; colon_index && j < *colon_index; ++j) { |
1874 | 0 | if (script_size > max_size) return {}; |
1875 | 0 | if (in[j] == 'a') { |
1876 | 0 | script_size += 2; |
1877 | 0 | to_parse.emplace_back(ParseContext::ALT, -1, -1); |
1878 | 0 | } else if (in[j] == 's') { |
1879 | 0 | script_size += 1; |
1880 | 0 | to_parse.emplace_back(ParseContext::SWAP, -1, -1); |
1881 | 0 | } else if (in[j] == 'c') { |
1882 | 0 | script_size += 1; |
1883 | 0 | to_parse.emplace_back(ParseContext::CHECK, -1, -1); |
1884 | 0 | } else if (in[j] == 'd') { |
1885 | 0 | script_size += 3; |
1886 | 0 | to_parse.emplace_back(ParseContext::DUP_IF, -1, -1); |
1887 | 0 | } else if (in[j] == 'j') { |
1888 | 0 | script_size += 4; |
1889 | 0 | to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1); |
1890 | 0 | } else if (in[j] == 'n') { |
1891 | 0 | script_size += 1; |
1892 | 0 | to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1); |
1893 | 0 | } else if (in[j] == 'v') { |
1894 | | // do not permit "...vv...:"; it's not valid, and also doesn't trigger early |
1895 | | // failure as script_size isn't incremented. |
1896 | 0 | if (last_was_v) return {}; |
1897 | 0 | to_parse.emplace_back(ParseContext::VERIFY, -1, -1); |
1898 | 0 | } else if (in[j] == 'u') { |
1899 | 0 | script_size += 4; |
1900 | 0 | to_parse.emplace_back(ParseContext::WRAP_U, -1, -1); |
1901 | 0 | } else if (in[j] == 't') { |
1902 | 0 | script_size += 1; |
1903 | 0 | to_parse.emplace_back(ParseContext::WRAP_T, -1, -1); |
1904 | 0 | } else if (in[j] == 'l') { |
1905 | | // The l: wrapper is equivalent to or_i(0,X) |
1906 | 0 | script_size += 4; |
1907 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)); |
1908 | 0 | to_parse.emplace_back(ParseContext::OR_I, -1, -1); |
1909 | 0 | } else { |
1910 | 0 | return {}; |
1911 | 0 | } |
1912 | 0 | last_was_v = (in[j] == 'v'); |
1913 | 0 | } |
1914 | 0 | to_parse.emplace_back(ParseContext::EXPR, -1, -1); |
1915 | 0 | if (colon_index) in = in.subspan(*colon_index + 1); |
1916 | 0 | break; |
1917 | 0 | } |
1918 | 0 | case ParseContext::EXPR: { |
1919 | 0 | if (Const("0", in)) { |
1920 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)); |
1921 | 0 | } else if (Const("1", in)) { |
1922 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1)); |
1923 | 0 | } else if (Const("pk(", in)) { |
1924 | 0 | auto res = ParseKeyEnd<Key, Ctx>(in, ctx); |
1925 | 0 | if (!res) return {}; |
1926 | 0 | auto& [key, key_size] = *res; |
1927 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key)))))); |
1928 | 0 | in = in.subspan(key_size + 1); |
1929 | 0 | script_size += IsTapscript(ctx.MsContext()) ? 33 : 34; |
1930 | 0 | } else if (Const("pkh(", in)) { |
1931 | 0 | auto res = ParseKeyEnd<Key>(in, ctx); |
1932 | 0 | if (!res) return {}; |
1933 | 0 | auto& [key, key_size] = *res; |
1934 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key)))))); |
1935 | 0 | in = in.subspan(key_size + 1); |
1936 | 0 | script_size += 24; |
1937 | 0 | } else if (Const("pk_k(", in)) { |
1938 | 0 | auto res = ParseKeyEnd<Key>(in, ctx); |
1939 | 0 | if (!res) return {}; |
1940 | 0 | auto& [key, key_size] = *res; |
1941 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(key)))); |
1942 | 0 | in = in.subspan(key_size + 1); |
1943 | 0 | script_size += IsTapscript(ctx.MsContext()) ? 32 : 33; |
1944 | 0 | } else if (Const("pk_h(", in)) { |
1945 | 0 | auto res = ParseKeyEnd<Key>(in, ctx); |
1946 | 0 | if (!res) return {}; |
1947 | 0 | auto& [key, key_size] = *res; |
1948 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(key)))); |
1949 | 0 | in = in.subspan(key_size + 1); |
1950 | 0 | script_size += 23; |
1951 | 0 | } else if (Const("sha256(", in)) { |
1952 | 0 | auto res = ParseHexStrEnd(in, 32, ctx); |
1953 | 0 | if (!res) return {}; |
1954 | 0 | auto& [hash, hash_size] = *res; |
1955 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, std::move(hash))); |
1956 | 0 | in = in.subspan(hash_size + 1); |
1957 | 0 | script_size += 38; |
1958 | 0 | } else if (Const("ripemd160(", in)) { |
1959 | 0 | auto res = ParseHexStrEnd(in, 20, ctx); |
1960 | 0 | if (!res) return {}; |
1961 | 0 | auto& [hash, hash_size] = *res; |
1962 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, std::move(hash))); |
1963 | 0 | in = in.subspan(hash_size + 1); |
1964 | 0 | script_size += 26; |
1965 | 0 | } else if (Const("hash256(", in)) { |
1966 | 0 | auto res = ParseHexStrEnd(in, 32, ctx); |
1967 | 0 | if (!res) return {}; |
1968 | 0 | auto& [hash, hash_size] = *res; |
1969 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, std::move(hash))); |
1970 | 0 | in = in.subspan(hash_size + 1); |
1971 | 0 | script_size += 38; |
1972 | 0 | } else if (Const("hash160(", in)) { |
1973 | 0 | auto res = ParseHexStrEnd(in, 20, ctx); |
1974 | 0 | if (!res) return {}; |
1975 | 0 | auto& [hash, hash_size] = *res; |
1976 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, std::move(hash))); |
1977 | 0 | in = in.subspan(hash_size + 1); |
1978 | 0 | script_size += 26; |
1979 | 0 | } else if (Const("after(", in)) { |
1980 | 0 | int arg_size = FindNextChar(in, ')'); |
1981 | 0 | if (arg_size < 1) return {}; |
1982 | 0 | const auto num{ToIntegral<int64_t>(std::string_view(in.data(), arg_size))}; |
1983 | 0 | if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {}; |
1984 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num)); |
1985 | 0 | in = in.subspan(arg_size + 1); |
1986 | 0 | script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff); |
1987 | 0 | } else if (Const("older(", in)) { |
1988 | 0 | int arg_size = FindNextChar(in, ')'); |
1989 | 0 | if (arg_size < 1) return {}; |
1990 | 0 | const auto num{ToIntegral<int64_t>(std::string_view(in.data(), arg_size))}; |
1991 | 0 | if (!num.has_value() || *num < 1 || *num >= 0x80000000L) return {}; |
1992 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num)); |
1993 | 0 | in = in.subspan(arg_size + 1); |
1994 | 0 | script_size += 1 + (*num > 16) + (*num > 0x7f) + (*num > 0x7fff) + (*num > 0x7fffff); |
1995 | 0 | } else if (Const("multi(", in)) { |
1996 | 0 | if (!parse_multi_exp(in, /* is_multi_a = */false)) return {}; |
1997 | 0 | } else if (Const("multi_a(", in)) { |
1998 | 0 | if (!parse_multi_exp(in, /* is_multi_a = */true)) return {}; |
1999 | 0 | } else if (Const("thresh(", in)) { |
2000 | 0 | int next_comma = FindNextChar(in, ','); |
2001 | 0 | if (next_comma < 1) return {}; |
2002 | 0 | const auto k{ToIntegral<int64_t>(std::string_view(in.data(), next_comma))}; |
2003 | 0 | if (!k.has_value() || *k < 1) return {}; |
2004 | 0 | in = in.subspan(next_comma + 1); |
2005 | | // n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH |
2006 | 0 | to_parse.emplace_back(ParseContext::THRESH, 1, *k); |
2007 | 0 | to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); |
2008 | 0 | script_size += 2 + (*k > 16) + (*k > 0x7f) + (*k > 0x7fff) + (*k > 0x7fffff); |
2009 | 0 | } else if (Const("andor(", in)) { |
2010 | 0 | to_parse.emplace_back(ParseContext::ANDOR, -1, -1); |
2011 | 0 | to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1); |
2012 | 0 | to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); |
2013 | 0 | to_parse.emplace_back(ParseContext::COMMA, -1, -1); |
2014 | 0 | to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); |
2015 | 0 | to_parse.emplace_back(ParseContext::COMMA, -1, -1); |
2016 | 0 | to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); |
2017 | 0 | script_size += 5; |
2018 | 0 | } else { |
2019 | 0 | if (Const("and_n(", in)) { |
2020 | 0 | to_parse.emplace_back(ParseContext::AND_N, -1, -1); |
2021 | 0 | script_size += 5; |
2022 | 0 | } else if (Const("and_b(", in)) { |
2023 | 0 | to_parse.emplace_back(ParseContext::AND_B, -1, -1); |
2024 | 0 | script_size += 2; |
2025 | 0 | } else if (Const("and_v(", in)) { |
2026 | 0 | to_parse.emplace_back(ParseContext::AND_V, -1, -1); |
2027 | 0 | script_size += 1; |
2028 | 0 | } else if (Const("or_b(", in)) { |
2029 | 0 | to_parse.emplace_back(ParseContext::OR_B, -1, -1); |
2030 | 0 | script_size += 2; |
2031 | 0 | } else if (Const("or_c(", in)) { |
2032 | 0 | to_parse.emplace_back(ParseContext::OR_C, -1, -1); |
2033 | 0 | script_size += 3; |
2034 | 0 | } else if (Const("or_d(", in)) { |
2035 | 0 | to_parse.emplace_back(ParseContext::OR_D, -1, -1); |
2036 | 0 | script_size += 4; |
2037 | 0 | } else if (Const("or_i(", in)) { |
2038 | 0 | to_parse.emplace_back(ParseContext::OR_I, -1, -1); |
2039 | 0 | script_size += 4; |
2040 | 0 | } else { |
2041 | 0 | return {}; |
2042 | 0 | } |
2043 | 0 | to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1); |
2044 | 0 | to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); |
2045 | 0 | to_parse.emplace_back(ParseContext::COMMA, -1, -1); |
2046 | 0 | to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); |
2047 | 0 | } |
2048 | 0 | break; |
2049 | 0 | } |
2050 | 0 | case ParseContext::ALT: { |
2051 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back()))); |
2052 | 0 | break; |
2053 | 0 | } |
2054 | 0 | case ParseContext::SWAP: { |
2055 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back()))); |
2056 | 0 | break; |
2057 | 0 | } |
2058 | 0 | case ParseContext::CHECK: { |
2059 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back()))); |
2060 | 0 | break; |
2061 | 0 | } |
2062 | 0 | case ParseContext::DUP_IF: { |
2063 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back()))); |
2064 | 0 | break; |
2065 | 0 | } |
2066 | 0 | case ParseContext::NON_ZERO: { |
2067 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back()))); |
2068 | 0 | break; |
2069 | 0 | } |
2070 | 0 | case ParseContext::ZERO_NOTEQUAL: { |
2071 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back()))); |
2072 | 0 | break; |
2073 | 0 | } |
2074 | 0 | case ParseContext::VERIFY: { |
2075 | 0 | script_size += (constructed.back()->GetType() << "x"_mst); |
2076 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back()))); |
2077 | 0 | break; |
2078 | 0 | } |
2079 | 0 | case ParseContext::WRAP_U: { |
2080 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OR_I, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0))); |
2081 | 0 | break; |
2082 | 0 | } |
2083 | 0 | case ParseContext::WRAP_T: { |
2084 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AND_V, Vector(std::move(constructed.back()), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1))); |
2085 | 0 | break; |
2086 | 0 | } |
2087 | 0 | case ParseContext::AND_B: { |
2088 | 0 | BuildBack(ctx.MsContext(), Fragment::AND_B, constructed); |
2089 | 0 | break; |
2090 | 0 | } |
2091 | 0 | case ParseContext::AND_N: { |
2092 | 0 | auto mid = std::move(constructed.back()); |
2093 | 0 | constructed.pop_back(); |
2094 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0))); |
2095 | 0 | break; |
2096 | 0 | } |
2097 | 0 | case ParseContext::AND_V: { |
2098 | 0 | BuildBack(ctx.MsContext(), Fragment::AND_V, constructed); |
2099 | 0 | break; |
2100 | 0 | } |
2101 | 0 | case ParseContext::OR_B: { |
2102 | 0 | BuildBack(ctx.MsContext(), Fragment::OR_B, constructed); |
2103 | 0 | break; |
2104 | 0 | } |
2105 | 0 | case ParseContext::OR_C: { |
2106 | 0 | BuildBack(ctx.MsContext(), Fragment::OR_C, constructed); |
2107 | 0 | break; |
2108 | 0 | } |
2109 | 0 | case ParseContext::OR_D: { |
2110 | 0 | BuildBack(ctx.MsContext(), Fragment::OR_D, constructed); |
2111 | 0 | break; |
2112 | 0 | } |
2113 | 0 | case ParseContext::OR_I: { |
2114 | 0 | BuildBack(ctx.MsContext(), Fragment::OR_I, constructed); |
2115 | 0 | break; |
2116 | 0 | } |
2117 | 0 | case ParseContext::ANDOR: { |
2118 | 0 | auto right = std::move(constructed.back()); |
2119 | 0 | constructed.pop_back(); |
2120 | 0 | auto mid = std::move(constructed.back()); |
2121 | 0 | constructed.pop_back(); |
2122 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right))); |
2123 | 0 | break; |
2124 | 0 | } |
2125 | 0 | case ParseContext::THRESH: { |
2126 | 0 | if (in.size() < 1) return {}; |
2127 | 0 | if (in[0] == ',') { |
2128 | 0 | in = in.subspan(1); |
2129 | 0 | to_parse.emplace_back(ParseContext::THRESH, n+1, k); |
2130 | 0 | to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1); |
2131 | 0 | script_size += 2; |
2132 | 0 | } else if (in[0] == ')') { |
2133 | 0 | if (k > n) return {}; |
2134 | 0 | in = in.subspan(1); |
2135 | | // Children are constructed in reverse order, so iterate from end to beginning |
2136 | 0 | std::vector<NodeRef<Key>> subs; |
2137 | 0 | for (int i = 0; i < n; ++i) { |
2138 | 0 | subs.push_back(std::move(constructed.back())); |
2139 | 0 | constructed.pop_back(); |
2140 | 0 | } |
2141 | 0 | std::reverse(subs.begin(), subs.end()); |
2142 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k)); |
2143 | 0 | } else { |
2144 | 0 | return {}; |
2145 | 0 | } |
2146 | 0 | break; |
2147 | 0 | } |
2148 | 0 | case ParseContext::COMMA: { |
2149 | 0 | if (in.size() < 1 || in[0] != ',') return {}; |
2150 | 0 | in = in.subspan(1); |
2151 | 0 | break; |
2152 | 0 | } |
2153 | 0 | case ParseContext::CLOSE_BRACKET: { |
2154 | 0 | if (in.size() < 1 || in[0] != ')') return {}; |
2155 | 0 | in = in.subspan(1); |
2156 | 0 | break; |
2157 | 0 | } |
2158 | 0 | } |
2159 | 0 | } |
2160 | | |
2161 | | // Sanity checks on the produced miniscript |
2162 | 0 | assert(constructed.size() >= 1); |
2163 | 0 | CHECK_NONFATAL(constructed.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
| CHECK_NONFATAL(constructed.size() == 1); Line | Count | Source | 103 | 0 | inline_check_non_fatal(condition, __FILE__, __LINE__, __func__, #condition) |
|
2164 | 0 | assert(constructed[0]->ScriptSize() == script_size); |
2165 | 0 | if (in.size() > 0) return {}; |
2166 | 0 | NodeRef<Key> tl_node = std::move(constructed.front()); |
2167 | 0 | tl_node->DuplicateKeyCheck(ctx); |
2168 | 0 | return tl_node; |
2169 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZN10miniscript8internal5ParseI7CPubKeyN12_GLOBAL__N_113ParserContextEEENSt3__110unique_ptrIKNS_4NodeIT_EENS5_14default_deleteISA_EEEENS5_4spanIKcLm18446744073709551615EEERKT0_ Unexecuted instantiation: descriptor.cpp:_ZN10miniscript8internal5ParseIjN12_GLOBAL__N_19KeyParserEEENSt3__110unique_ptrIKNS_4NodeIT_EENS4_14default_deleteIS9_EEEENS4_4spanIKcLm18446744073709551615EEERKT0_ |
2170 | | |
2171 | | /** Decode a script into opcode/push pairs. |
2172 | | * |
2173 | | * Construct a vector with one element per opcode in the script, in reverse order. |
2174 | | * Each element is a pair consisting of the opcode, as well as the data pushed by |
2175 | | * the opcode (including OP_n), if any. OP_CHECKSIGVERIFY, OP_CHECKMULTISIGVERIFY, |
2176 | | * OP_NUMEQUALVERIFY and OP_EQUALVERIFY are decomposed into OP_CHECKSIG, OP_CHECKMULTISIG, |
2177 | | * OP_EQUAL and OP_NUMEQUAL respectively, plus OP_VERIFY. |
2178 | | */ |
2179 | | std::optional<std::vector<Opcode>> DecomposeScript(const CScript& script); |
2180 | | |
2181 | | /** Determine whether the passed pair (created by DecomposeScript) is pushing a number. */ |
2182 | | std::optional<int64_t> ParseScriptNumber(const Opcode& in); |
2183 | | |
2184 | | enum class DecodeContext { |
2185 | | /** A single expression of type B, K, or V. Specifically, this can't be an |
2186 | | * and_v or an expression of type W (a: and s: wrappers). */ |
2187 | | SINGLE_BKV_EXPR, |
2188 | | /** Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple) |
2189 | | * and_v expressions. Syntactic sugar for MAYBE_AND_V + SINGLE_BKV_EXPR. */ |
2190 | | BKV_EXPR, |
2191 | | /** An expression of type W (a: or s: wrappers). */ |
2192 | | W_EXPR, |
2193 | | |
2194 | | /** SWAP expects the next element to be OP_SWAP (inside a W-type expression that |
2195 | | * didn't end with FROMALTSTACK), and wraps the top of the constructed stack |
2196 | | * with s: */ |
2197 | | SWAP, |
2198 | | /** ALT expects the next element to be TOALTSTACK (we must have already read a |
2199 | | * FROMALTSTACK earlier), and wraps the top of the constructed stack with a: */ |
2200 | | ALT, |
2201 | | /** CHECK wraps the top constructed node with c: */ |
2202 | | CHECK, |
2203 | | /** DUP_IF wraps the top constructed node with d: */ |
2204 | | DUP_IF, |
2205 | | /** VERIFY wraps the top constructed node with v: */ |
2206 | | VERIFY, |
2207 | | /** NON_ZERO wraps the top constructed node with j: */ |
2208 | | NON_ZERO, |
2209 | | /** ZERO_NOTEQUAL wraps the top constructed node with n: */ |
2210 | | ZERO_NOTEQUAL, |
2211 | | |
2212 | | /** MAYBE_AND_V will check if the next part of the script could be a valid |
2213 | | * miniscript sub-expression, and if so it will push AND_V and SINGLE_BKV_EXPR |
2214 | | * to decode it and construct the and_v node. This is recursive, to deal with |
2215 | | * multiple and_v nodes inside each other. */ |
2216 | | MAYBE_AND_V, |
2217 | | /** AND_V will construct an and_v node from the last two constructed nodes. */ |
2218 | | AND_V, |
2219 | | /** AND_B will construct an and_b node from the last two constructed nodes. */ |
2220 | | AND_B, |
2221 | | /** ANDOR will construct an andor node from the last three constructed nodes. */ |
2222 | | ANDOR, |
2223 | | /** OR_B will construct an or_b node from the last two constructed nodes. */ |
2224 | | OR_B, |
2225 | | /** OR_C will construct an or_c node from the last two constructed nodes. */ |
2226 | | OR_C, |
2227 | | /** OR_D will construct an or_d node from the last two constructed nodes. */ |
2228 | | OR_D, |
2229 | | |
2230 | | /** In a thresh expression, all sub-expressions other than the first are W-type, |
2231 | | * and end in OP_ADD. THRESH_W will check for this OP_ADD and either push a W_EXPR |
2232 | | * or a SINGLE_BKV_EXPR and jump to THRESH_E accordingly. */ |
2233 | | THRESH_W, |
2234 | | /** THRESH_E constructs a thresh node from the appropriate number of constructed |
2235 | | * children. */ |
2236 | | THRESH_E, |
2237 | | |
2238 | | /** ENDIF signals that we are inside some sort of OP_IF structure, which could be |
2239 | | * or_d, or_c, or_i, andor, d:, or j: wrapper, depending on what follows. We read |
2240 | | * a BKV_EXPR and then deal with the next opcode case-by-case. */ |
2241 | | ENDIF, |
2242 | | /** If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE, |
2243 | | * we could either be in an or_d or an or_c node. We then check for IFDUP to |
2244 | | * distinguish these cases. */ |
2245 | | ENDIF_NOTIF, |
2246 | | /** If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an |
2247 | | * or_i or an andor node. Read the next BKV_EXPR and find either an OP_IF or an |
2248 | | * OP_NOTIF. */ |
2249 | | ENDIF_ELSE, |
2250 | | }; |
2251 | | |
2252 | | //! Parse a miniscript from a bitcoin script |
2253 | | template<typename Key, typename Ctx, typename I> |
2254 | | inline NodeRef<Key> DecodeScript(I& in, I last, const Ctx& ctx) |
2255 | 0 | { |
2256 | | // The two integers are used to hold state for thresh() |
2257 | 0 | std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse; |
2258 | 0 | std::vector<NodeRef<Key>> constructed; |
2259 | | |
2260 | | // This is the top level, so we assume the type is B |
2261 | | // (in particular, disallowing top level W expressions) |
2262 | 0 | to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1); |
2263 | |
|
2264 | 0 | while (!to_parse.empty()) { |
2265 | | // Exit early if the Miniscript is not going to be valid. |
2266 | 0 | if (!constructed.empty() && !constructed.back()->IsValid()) return {}; |
2267 | | |
2268 | | // Get the current context we are decoding within |
2269 | 0 | auto [cur_context, n, k] = to_parse.back(); |
2270 | 0 | to_parse.pop_back(); |
2271 | |
|
2272 | 0 | switch(cur_context) { |
2273 | 0 | case DecodeContext::SINGLE_BKV_EXPR: { |
2274 | 0 | if (in >= last) return {}; |
2275 | | |
2276 | | // Constants |
2277 | 0 | if (in[0].first == OP_1) { |
2278 | 0 | ++in; |
2279 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_1)); |
2280 | 0 | break; |
2281 | 0 | } |
2282 | 0 | if (in[0].first == OP_0) { |
2283 | 0 | ++in; |
2284 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::JUST_0)); |
2285 | 0 | break; |
2286 | 0 | } |
2287 | | // Public keys |
2288 | 0 | if (in[0].second.size() == 33 || in[0].second.size() == 32) { |
2289 | 0 | auto key = ctx.FromPKBytes(in[0].second.begin(), in[0].second.end()); |
2290 | 0 | if (!key) return {}; |
2291 | 0 | ++in; |
2292 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_K, Vector(std::move(*key)))); |
2293 | 0 | break; |
2294 | 0 | } |
2295 | 0 | if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) { |
2296 | 0 | auto key = ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end()); |
2297 | 0 | if (!key) return {}; |
2298 | 0 | in += 5; |
2299 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::PK_H, Vector(std::move(*key)))); |
2300 | 0 | break; |
2301 | 0 | } |
2302 | | // Time locks |
2303 | 0 | std::optional<int64_t> num; |
2304 | 0 | if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && (num = ParseScriptNumber(in[1]))) { |
2305 | 0 | in += 2; |
2306 | 0 | if (*num < 1 || *num > 0x7FFFFFFFL) return {}; |
2307 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::OLDER, *num)); |
2308 | 0 | break; |
2309 | 0 | } |
2310 | 0 | if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && (num = ParseScriptNumber(in[1]))) { |
2311 | 0 | in += 2; |
2312 | 0 | if (num < 1 || num > 0x7FFFFFFFL) return {}; |
2313 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::AFTER, *num)); |
2314 | 0 | break; |
2315 | 0 | } |
2316 | | // Hashes |
2317 | 0 | if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && (num = ParseScriptNumber(in[5])) && num == 32 && in[6].first == OP_SIZE) { |
2318 | 0 | if (in[2].first == OP_SHA256 && in[1].second.size() == 32) { |
2319 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::SHA256, in[1].second)); |
2320 | 0 | in += 7; |
2321 | 0 | break; |
2322 | 0 | } else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) { |
2323 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::RIPEMD160, in[1].second)); |
2324 | 0 | in += 7; |
2325 | 0 | break; |
2326 | 0 | } else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) { |
2327 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH256, in[1].second)); |
2328 | 0 | in += 7; |
2329 | 0 | break; |
2330 | 0 | } else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) { |
2331 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::HASH160, in[1].second)); |
2332 | 0 | in += 7; |
2333 | 0 | break; |
2334 | 0 | } |
2335 | 0 | } |
2336 | | // Multi |
2337 | 0 | if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) { |
2338 | 0 | if (IsTapscript(ctx.MsContext())) return {}; |
2339 | 0 | std::vector<Key> keys; |
2340 | 0 | const auto n = ParseScriptNumber(in[1]); |
2341 | 0 | if (!n || last - in < 3 + *n) return {}; |
2342 | 0 | if (*n < 1 || *n > 20) return {}; |
2343 | 0 | for (int i = 0; i < *n; ++i) { |
2344 | 0 | if (in[2 + i].second.size() != 33) return {}; |
2345 | 0 | auto key = ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end()); |
2346 | 0 | if (!key) return {}; |
2347 | 0 | keys.push_back(std::move(*key)); |
2348 | 0 | } |
2349 | 0 | const auto k = ParseScriptNumber(in[2 + *n]); |
2350 | 0 | if (!k || *k < 1 || *k > *n) return {}; |
2351 | 0 | in += 3 + *n; |
2352 | 0 | std::reverse(keys.begin(), keys.end()); |
2353 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI, std::move(keys), *k)); |
2354 | 0 | break; |
2355 | 0 | } |
2356 | | // Tapscript's equivalent of multi |
2357 | 0 | if (last - in >= 4 && in[0].first == OP_NUMEQUAL) { |
2358 | 0 | if (!IsTapscript(ctx.MsContext())) return {}; |
2359 | | // The necessary threshold of signatures. |
2360 | 0 | const auto k = ParseScriptNumber(in[1]); |
2361 | 0 | if (!k) return {}; |
2362 | 0 | if (*k < 1 || *k > MAX_PUBKEYS_PER_MULTI_A) return {}; |
2363 | 0 | if (last - in < 2 + *k * 2) return {}; |
2364 | 0 | std::vector<Key> keys; |
2365 | 0 | keys.reserve(*k); |
2366 | | // Walk through the expected (pubkey, CHECKSIG[ADD]) pairs. |
2367 | 0 | for (int pos = 2;; pos += 2) { |
2368 | 0 | if (last - in < pos + 2) return {}; |
2369 | | // Make sure it's indeed an x-only pubkey and a CHECKSIG[ADD], then parse the key. |
2370 | 0 | if (in[pos].first != OP_CHECKSIGADD && in[pos].first != OP_CHECKSIG) return {}; |
2371 | 0 | if (in[pos + 1].second.size() != 32) return {}; |
2372 | 0 | auto key = ctx.FromPKBytes(in[pos + 1].second.begin(), in[pos + 1].second.end()); |
2373 | 0 | if (!key) return {}; |
2374 | 0 | keys.push_back(std::move(*key)); |
2375 | | // Make sure early we don't parse an arbitrary large expression. |
2376 | 0 | if (keys.size() > MAX_PUBKEYS_PER_MULTI_A) return {}; |
2377 | | // OP_CHECKSIG means it was the last one to parse. |
2378 | 0 | if (in[pos].first == OP_CHECKSIG) break; |
2379 | 0 | } |
2380 | 0 | if (keys.size() < (size_t)*k) return {}; |
2381 | 0 | in += 2 + keys.size() * 2; |
2382 | 0 | std::reverse(keys.begin(), keys.end()); |
2383 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::MULTI_A, std::move(keys), *k)); |
2384 | 0 | break; |
2385 | 0 | } |
2386 | | /** In the following wrappers, we only need to push SINGLE_BKV_EXPR rather |
2387 | | * than BKV_EXPR, because and_v commutes with these wrappers. For example, |
2388 | | * c:and_v(X,Y) produces the same script as and_v(X,c:Y). */ |
2389 | | // c: wrapper |
2390 | 0 | if (in[0].first == OP_CHECKSIG) { |
2391 | 0 | ++in; |
2392 | 0 | to_parse.emplace_back(DecodeContext::CHECK, -1, -1); |
2393 | 0 | to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); |
2394 | 0 | break; |
2395 | 0 | } |
2396 | | // v: wrapper |
2397 | 0 | if (in[0].first == OP_VERIFY) { |
2398 | 0 | ++in; |
2399 | 0 | to_parse.emplace_back(DecodeContext::VERIFY, -1, -1); |
2400 | 0 | to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); |
2401 | 0 | break; |
2402 | 0 | } |
2403 | | // n: wrapper |
2404 | 0 | if (in[0].first == OP_0NOTEQUAL) { |
2405 | 0 | ++in; |
2406 | 0 | to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1); |
2407 | 0 | to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); |
2408 | 0 | break; |
2409 | 0 | } |
2410 | | // Thresh |
2411 | 0 | if (last - in >= 3 && in[0].first == OP_EQUAL && (num = ParseScriptNumber(in[1]))) { |
2412 | 0 | if (*num < 1) return {}; |
2413 | 0 | in += 2; |
2414 | 0 | to_parse.emplace_back(DecodeContext::THRESH_W, 0, *num); |
2415 | 0 | break; |
2416 | 0 | } |
2417 | | // OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I |
2418 | 0 | if (in[0].first == OP_ENDIF) { |
2419 | 0 | ++in; |
2420 | 0 | to_parse.emplace_back(DecodeContext::ENDIF, -1, -1); |
2421 | 0 | to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1); |
2422 | 0 | break; |
2423 | 0 | } |
2424 | | /** In and_b and or_b nodes, we only look for SINGLE_BKV_EXPR, because |
2425 | | * or_b(and_v(X,Y),Z) has script [X] [Y] [Z] OP_BOOLOR, the same as |
2426 | | * and_v(X,or_b(Y,Z)). In this example, the former of these is invalid as |
2427 | | * miniscript, while the latter is valid. So we leave the and_v "outside" |
2428 | | * while decoding. */ |
2429 | | // and_b |
2430 | 0 | if (in[0].first == OP_BOOLAND) { |
2431 | 0 | ++in; |
2432 | 0 | to_parse.emplace_back(DecodeContext::AND_B, -1, -1); |
2433 | 0 | to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); |
2434 | 0 | to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1); |
2435 | 0 | break; |
2436 | 0 | } |
2437 | | // or_b |
2438 | 0 | if (in[0].first == OP_BOOLOR) { |
2439 | 0 | ++in; |
2440 | 0 | to_parse.emplace_back(DecodeContext::OR_B, -1, -1); |
2441 | 0 | to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); |
2442 | 0 | to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1); |
2443 | 0 | break; |
2444 | 0 | } |
2445 | | // Unrecognised expression |
2446 | 0 | return {}; |
2447 | 0 | } |
2448 | 0 | case DecodeContext::BKV_EXPR: { |
2449 | 0 | to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1); |
2450 | 0 | to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); |
2451 | 0 | break; |
2452 | 0 | } |
2453 | 0 | case DecodeContext::W_EXPR: { |
2454 | | // a: wrapper |
2455 | 0 | if (in >= last) return {}; |
2456 | 0 | if (in[0].first == OP_FROMALTSTACK) { |
2457 | 0 | ++in; |
2458 | 0 | to_parse.emplace_back(DecodeContext::ALT, -1, -1); |
2459 | 0 | } else { |
2460 | 0 | to_parse.emplace_back(DecodeContext::SWAP, -1, -1); |
2461 | 0 | } |
2462 | 0 | to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1); |
2463 | 0 | break; |
2464 | 0 | } |
2465 | 0 | case DecodeContext::MAYBE_AND_V: { |
2466 | | // If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child |
2467 | | // These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node. |
2468 | 0 | if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) { |
2469 | 0 | to_parse.emplace_back(DecodeContext::AND_V, -1, -1); |
2470 | | // BKV_EXPR can contain more AND_V nodes |
2471 | 0 | to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1); |
2472 | 0 | } |
2473 | 0 | break; |
2474 | 0 | } |
2475 | 0 | case DecodeContext::SWAP: { |
2476 | 0 | if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {}; |
2477 | 0 | ++in; |
2478 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_S, Vector(std::move(constructed.back()))); |
2479 | 0 | break; |
2480 | 0 | } |
2481 | 0 | case DecodeContext::ALT: { |
2482 | 0 | if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {}; |
2483 | 0 | ++in; |
2484 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_A, Vector(std::move(constructed.back()))); |
2485 | 0 | break; |
2486 | 0 | } |
2487 | 0 | case DecodeContext::CHECK: { |
2488 | 0 | if (constructed.empty()) return {}; |
2489 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_C, Vector(std::move(constructed.back()))); |
2490 | 0 | break; |
2491 | 0 | } |
2492 | 0 | case DecodeContext::DUP_IF: { |
2493 | 0 | if (constructed.empty()) return {}; |
2494 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_D, Vector(std::move(constructed.back()))); |
2495 | 0 | break; |
2496 | 0 | } |
2497 | 0 | case DecodeContext::VERIFY: { |
2498 | 0 | if (constructed.empty()) return {}; |
2499 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_V, Vector(std::move(constructed.back()))); |
2500 | 0 | break; |
2501 | 0 | } |
2502 | 0 | case DecodeContext::NON_ZERO: { |
2503 | 0 | if (constructed.empty()) return {}; |
2504 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_J, Vector(std::move(constructed.back()))); |
2505 | 0 | break; |
2506 | 0 | } |
2507 | 0 | case DecodeContext::ZERO_NOTEQUAL: { |
2508 | 0 | if (constructed.empty()) return {}; |
2509 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::WRAP_N, Vector(std::move(constructed.back()))); |
2510 | 0 | break; |
2511 | 0 | } |
2512 | 0 | case DecodeContext::AND_V: { |
2513 | 0 | if (constructed.size() < 2) return {}; |
2514 | 0 | BuildBack(ctx.MsContext(), Fragment::AND_V, constructed, /*reverse=*/true); |
2515 | 0 | break; |
2516 | 0 | } |
2517 | 0 | case DecodeContext::AND_B: { |
2518 | 0 | if (constructed.size() < 2) return {}; |
2519 | 0 | BuildBack(ctx.MsContext(), Fragment::AND_B, constructed, /*reverse=*/true); |
2520 | 0 | break; |
2521 | 0 | } |
2522 | 0 | case DecodeContext::OR_B: { |
2523 | 0 | if (constructed.size() < 2) return {}; |
2524 | 0 | BuildBack(ctx.MsContext(), Fragment::OR_B, constructed, /*reverse=*/true); |
2525 | 0 | break; |
2526 | 0 | } |
2527 | 0 | case DecodeContext::OR_C: { |
2528 | 0 | if (constructed.size() < 2) return {}; |
2529 | 0 | BuildBack(ctx.MsContext(), Fragment::OR_C, constructed, /*reverse=*/true); |
2530 | 0 | break; |
2531 | 0 | } |
2532 | 0 | case DecodeContext::OR_D: { |
2533 | 0 | if (constructed.size() < 2) return {}; |
2534 | 0 | BuildBack(ctx.MsContext(), Fragment::OR_D, constructed, /*reverse=*/true); |
2535 | 0 | break; |
2536 | 0 | } |
2537 | 0 | case DecodeContext::ANDOR: { |
2538 | 0 | if (constructed.size() < 3) return {}; |
2539 | 0 | NodeRef<Key> left = std::move(constructed.back()); |
2540 | 0 | constructed.pop_back(); |
2541 | 0 | NodeRef<Key> right = std::move(constructed.back()); |
2542 | 0 | constructed.pop_back(); |
2543 | 0 | NodeRef<Key> mid = std::move(constructed.back()); |
2544 | 0 | constructed.back() = MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right))); |
2545 | 0 | break; |
2546 | 0 | } |
2547 | 0 | case DecodeContext::THRESH_W: { |
2548 | 0 | if (in >= last) return {}; |
2549 | 0 | if (in[0].first == OP_ADD) { |
2550 | 0 | ++in; |
2551 | 0 | to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k); |
2552 | 0 | to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1); |
2553 | 0 | } else { |
2554 | 0 | to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k); |
2555 | | // All children of thresh have type modifier d, so cannot be and_v |
2556 | 0 | to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); |
2557 | 0 | } |
2558 | 0 | break; |
2559 | 0 | } |
2560 | 0 | case DecodeContext::THRESH_E: { |
2561 | 0 | if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {}; |
2562 | 0 | std::vector<NodeRef<Key>> subs; |
2563 | 0 | for (int i = 0; i < n; ++i) { |
2564 | 0 | NodeRef<Key> sub = std::move(constructed.back()); |
2565 | 0 | constructed.pop_back(); |
2566 | 0 | subs.push_back(std::move(sub)); |
2567 | 0 | } |
2568 | 0 | constructed.push_back(MakeNodeRef<Key>(internal::NoDupCheck{}, ctx.MsContext(), Fragment::THRESH, std::move(subs), k)); |
2569 | 0 | break; |
2570 | 0 | } |
2571 | 0 | case DecodeContext::ENDIF: { |
2572 | 0 | if (in >= last) return {}; |
2573 | | |
2574 | | // could be andor or or_i |
2575 | 0 | if (in[0].first == OP_ELSE) { |
2576 | 0 | ++in; |
2577 | 0 | to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1); |
2578 | 0 | to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1); |
2579 | 0 | } |
2580 | | // could be j: or d: wrapper |
2581 | 0 | else if (in[0].first == OP_IF) { |
2582 | 0 | if (last - in >= 2 && in[1].first == OP_DUP) { |
2583 | 0 | in += 2; |
2584 | 0 | to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1); |
2585 | 0 | } else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) { |
2586 | 0 | in += 3; |
2587 | 0 | to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1); |
2588 | 0 | } |
2589 | 0 | else { |
2590 | 0 | return {}; |
2591 | 0 | } |
2592 | | // could be or_c or or_d |
2593 | 0 | } else if (in[0].first == OP_NOTIF) { |
2594 | 0 | ++in; |
2595 | 0 | to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1); |
2596 | 0 | } |
2597 | 0 | else { |
2598 | 0 | return {}; |
2599 | 0 | } |
2600 | 0 | break; |
2601 | 0 | } |
2602 | 0 | case DecodeContext::ENDIF_NOTIF: { |
2603 | 0 | if (in >= last) return {}; |
2604 | 0 | if (in[0].first == OP_IFDUP) { |
2605 | 0 | ++in; |
2606 | 0 | to_parse.emplace_back(DecodeContext::OR_D, -1, -1); |
2607 | 0 | } else { |
2608 | 0 | to_parse.emplace_back(DecodeContext::OR_C, -1, -1); |
2609 | 0 | } |
2610 | | // or_c and or_d both require X to have type modifier d so, can't contain and_v |
2611 | 0 | to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); |
2612 | 0 | break; |
2613 | 0 | } |
2614 | 0 | case DecodeContext::ENDIF_ELSE: { |
2615 | 0 | if (in >= last) return {}; |
2616 | 0 | if (in[0].first == OP_IF) { |
2617 | 0 | ++in; |
2618 | 0 | BuildBack(ctx.MsContext(), Fragment::OR_I, constructed, /*reverse=*/true); |
2619 | 0 | } else if (in[0].first == OP_NOTIF) { |
2620 | 0 | ++in; |
2621 | 0 | to_parse.emplace_back(DecodeContext::ANDOR, -1, -1); |
2622 | | // andor requires X to have type modifier d, so it can't be and_v |
2623 | 0 | to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1); |
2624 | 0 | } else { |
2625 | 0 | return {}; |
2626 | 0 | } |
2627 | 0 | break; |
2628 | 0 | } |
2629 | 0 | } |
2630 | 0 | } |
2631 | 0 | if (constructed.size() != 1) return {}; |
2632 | 0 | NodeRef<Key> tl_node = std::move(constructed.front()); |
2633 | 0 | tl_node->DuplicateKeyCheck(ctx); |
2634 | | // Note that due to how ComputeType works (only assign the type to the node if the |
2635 | | // subs' types are valid) this would fail if any node of tree is badly typed. |
2636 | 0 | if (!tl_node->IsValidTopLevel()) return {}; |
2637 | 0 | return tl_node; |
2638 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZN10miniscript8internal12DecodeScriptI7CPubKeyN12_GLOBAL__N_113ParserContextENSt3__111__wrap_iterIPNS5_4pairI10opcodetypeNS5_6vectorIhNS5_9allocatorIhEEEEEEEEEENS5_10unique_ptrIKNS_4NodeIT_EENS5_14default_deleteISK_EEEERT1_SO_RKT0_ Unexecuted instantiation: miniscript.cpp:_ZN10miniscript8internal12DecodeScriptIN12_GLOBAL__N_119ScriptParserContext3KeyES3_NSt3__111__wrap_iterIPNS5_4pairI10opcodetypeNS5_6vectorIhNS5_9allocatorIhEEEEEEEEEENS5_10unique_ptrIKNS_4NodeIT_EENS5_14default_deleteISK_EEEERT1_SO_RKT0_ Unexecuted instantiation: descriptor.cpp:_ZN10miniscript8internal12DecodeScriptIjN12_GLOBAL__N_19KeyParserENSt3__111__wrap_iterIPNS4_4pairI10opcodetypeNS4_6vectorIhNS4_9allocatorIhEEEEEEEEEENS4_10unique_ptrIKNS_4NodeIT_EENS4_14default_deleteISJ_EEEERT1_SN_RKT0_ Unexecuted instantiation: _ZN10miniscript8internal12DecodeScriptI11XOnlyPubKey12TapSatisfierNSt3__111__wrap_iterIPNS4_4pairI10opcodetypeNS4_6vectorIhNS4_9allocatorIhEEEEEEEEEENS4_10unique_ptrIKNS_4NodeIT_EENS4_14default_deleteISJ_EEEERT1_SN_RKT0_ Unexecuted instantiation: _ZN10miniscript8internal12DecodeScriptI7CPubKey12WshSatisfierNSt3__111__wrap_iterIPNS4_4pairI10opcodetypeNS4_6vectorIhNS4_9allocatorIhEEEEEEEEEENS4_10unique_ptrIKNS_4NodeIT_EENS4_14default_deleteISJ_EEEERT1_SN_RKT0_ |
2639 | | |
2640 | | } // namespace internal |
2641 | | |
2642 | | template<typename Ctx> |
2643 | 0 | inline NodeRef<typename Ctx::Key> FromString(const std::string& str, const Ctx& ctx) { |
2644 | 0 | return internal::Parse<typename Ctx::Key>(str, ctx); |
2645 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZN10miniscript10FromStringIN12_GLOBAL__N_113ParserContextEEENSt3__110unique_ptrIKNS_4NodeINT_3KeyEEENS3_14default_deleteIS9_EEEERKNS3_12basic_stringIcNS3_11char_traitsIcEENS3_9allocatorIcEEEERKS6_ Unexecuted instantiation: descriptor.cpp:_ZN10miniscript10FromStringIN12_GLOBAL__N_19KeyParserEEENSt3__110unique_ptrIKNS_4NodeINT_3KeyEEENS3_14default_deleteIS9_EEEERKNS3_12basic_stringIcNS3_11char_traitsIcEENS3_9allocatorIcEEEERKS6_ |
2646 | | |
2647 | | template<typename Ctx> |
2648 | 0 | inline NodeRef<typename Ctx::Key> FromScript(const CScript& script, const Ctx& ctx) { |
2649 | 0 | using namespace internal; |
2650 | | // A too large Script is necessarily invalid, don't bother parsing it. |
2651 | 0 | if (script.size() > MaxScriptSize(ctx.MsContext())) return {}; |
2652 | 0 | auto decomposed = DecomposeScript(script); |
2653 | 0 | if (!decomposed) return {}; |
2654 | 0 | auto it = decomposed->begin(); |
2655 | 0 | auto ret = DecodeScript<typename Ctx::Key>(it, decomposed->end(), ctx); |
2656 | 0 | if (!ret) return {}; |
2657 | 0 | if (it != decomposed->end()) return {}; |
2658 | 0 | return ret; |
2659 | 0 | } Unexecuted instantiation: miniscript.cpp:_ZN10miniscript10FromScriptIN12_GLOBAL__N_113ParserContextEEENSt3__110unique_ptrIKNS_4NodeINT_3KeyEEENS3_14default_deleteIS9_EEEERK7CScriptRKS6_ Unexecuted instantiation: miniscript.cpp:_ZN10miniscript10FromScriptIN12_GLOBAL__N_119ScriptParserContextEEENSt3__110unique_ptrIKNS_4NodeINT_3KeyEEENS3_14default_deleteIS9_EEEERK7CScriptRKS6_ Unexecuted instantiation: descriptor.cpp:_ZN10miniscript10FromScriptIN12_GLOBAL__N_19KeyParserEEENSt3__110unique_ptrIKNS_4NodeINT_3KeyEEENS3_14default_deleteIS9_EEEERK7CScriptRKS6_ Unexecuted instantiation: _ZN10miniscript10FromScriptI12TapSatisfierEENSt3__110unique_ptrIKNS_4NodeINT_3KeyEEENS2_14default_deleteIS8_EEEERK7CScriptRKS5_ Unexecuted instantiation: _ZN10miniscript10FromScriptI12WshSatisfierEENSt3__110unique_ptrIKNS_4NodeINT_3KeyEEENS2_14default_deleteIS8_EEEERK7CScriptRKS5_ |
2660 | | |
2661 | | } // namespace miniscript |
2662 | | |
2663 | | #endif // BITCOIN_SCRIPT_MINISCRIPT_H |