fuzz coverage

Coverage Report

Created: 2025-06-01 19:34

/Users/eugenesiegel/btc/bitcoin/src/support/lockedpool.cpp
Line
Count
Source (jump to first uncovered line)
1
// Copyright (c) 2016-2022 The Bitcoin Core developers
2
// Distributed under the MIT software license, see the accompanying
3
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
4
5
#include <support/lockedpool.h>
6
#include <support/cleanse.h>
7
8
#ifdef WIN32
9
#include <windows.h>
10
#else
11
#include <sys/mman.h> // for mmap
12
#include <sys/resource.h> // for getrlimit
13
#include <limits.h> // for PAGESIZE
14
#include <unistd.h> // for sysconf
15
#endif
16
17
#include <algorithm>
18
#include <limits>
19
#include <stdexcept>
20
#include <utility>
21
#ifdef ARENA_DEBUG
22
#include <iomanip>
23
#include <iostream>
24
#endif
25
26
LockedPoolManager* LockedPoolManager::_instance = nullptr;
27
28
/*******************************************************************************/
29
// Utilities
30
//
31
/** Align up to power of 2 */
32
static inline size_t align_up(size_t x, size_t align)
33
49.9k
{
34
49.9k
    return (x + align - 1) & ~(align - 1);
35
49.9k
}
36
37
/*******************************************************************************/
38
// Implementation: Arena
39
40
Arena::Arena(void *base_in, size_t size_in, size_t alignment_in):
41
0
    base(base_in), end(static_cast<char*>(base_in) + size_in), alignment(alignment_in)
42
0
{
43
    // Start with one free chunk that covers the entire arena
44
0
    auto it = size_to_free_chunk.emplace(size_in, base);
45
0
    chunks_free.emplace(base, it);
46
0
    chunks_free_end.emplace(static_cast<char*>(base) + size_in, it);
47
0
}
48
49
0
Arena::~Arena() = default;
50
51
void* Arena::alloc(size_t size)
52
49.9k
{
53
    // Round to next multiple of alignment
54
49.9k
    size = align_up(size, alignment);
55
56
    // Don't handle zero-sized chunks
57
49.9k
    if (size == 0)
58
0
        return nullptr;
59
60
    // Pick a large enough free-chunk. Returns an iterator pointing to the first element that is not less than key.
61
    // This allocation strategy is best-fit. According to "Dynamic Storage Allocation: A Survey and Critical Review",
62
    // Wilson et. al. 1995, https://www.scs.stanford.edu/14wi-cs140/sched/readings/wilson.pdf, best-fit and first-fit
63
    // policies seem to work well in practice.
64
49.9k
    auto size_ptr_it = size_to_free_chunk.lower_bound(size);
65
49.9k
    if (size_ptr_it == size_to_free_chunk.end())
66
0
        return nullptr;
67
68
    // Create the used-chunk, taking its space from the end of the free-chunk
69
49.9k
    const size_t size_remaining = size_ptr_it->first - size;
70
49.9k
    char* const free_chunk = static_cast<char*>(size_ptr_it->second);
71
49.9k
    auto allocated = chunks_used.emplace(free_chunk + size_remaining, size).first;
72
49.9k
    chunks_free_end.erase(free_chunk + size_ptr_it->first);
73
49.9k
    if (size_ptr_it->first == size) {
74
        // whole chunk is used up
75
0
        chunks_free.erase(size_ptr_it->second);
76
49.9k
    } else {
77
        // still some memory left in the chunk
78
49.9k
        auto it_remaining = size_to_free_chunk.emplace(size_remaining, size_ptr_it->second);
79
49.9k
        chunks_free[size_ptr_it->second] = it_remaining;
80
49.9k
        chunks_free_end.emplace(free_chunk + size_remaining, it_remaining);
81
49.9k
    }
82
49.9k
    size_to_free_chunk.erase(size_ptr_it);
83
84
49.9k
    return allocated->first;
85
49.9k
}
86
87
void Arena::free(void *ptr)
88
49.9k
{
89
    // Freeing the nullptr pointer is OK.
90
49.9k
    if (ptr == nullptr) {
91
0
        return;
92
0
    }
93
94
    // Remove chunk from used map
95
49.9k
    auto i = chunks_used.find(ptr);
96
49.9k
    if (i == chunks_used.end()) {
97
0
        throw std::runtime_error("Arena: invalid or double free");
98
0
    }
99
49.9k
    auto freed = std::make_pair(static_cast<char*>(i->first), i->second);
100
49.9k
    chunks_used.erase(i);
101
102
    // coalesce freed with previous chunk
103
49.9k
    auto prev = chunks_free_end.find(freed.first);
104
49.9k
    if (prev != chunks_free_end.end()) {
105
49.9k
        freed.first -= prev->second->first;
106
49.9k
        freed.second += prev->second->first;
107
49.9k
        size_to_free_chunk.erase(prev->second);
108
49.9k
        chunks_free_end.erase(prev);
109
49.9k
    }
110
111
    // coalesce freed with chunk after freed
112
49.9k
    auto next = chunks_free.find(freed.first + freed.second);
113
49.9k
    if (next != chunks_free.end()) {
114
0
        freed.second += next->second->first;
115
0
        size_to_free_chunk.erase(next->second);
116
0
        chunks_free.erase(next);
117
0
    }
118
119
    // Add/set space with coalesced free chunk
120
49.9k
    auto it = size_to_free_chunk.emplace(freed.second, freed.first);
121
49.9k
    chunks_free[freed.first] = it;
122
49.9k
    chunks_free_end[freed.first + freed.second] = it;
123
49.9k
}
124
125
Arena::Stats Arena::stats() const
126
0
{
127
0
    Arena::Stats r{ 0, 0, 0, chunks_used.size(), chunks_free.size() };
128
0
    for (const auto& chunk: chunks_used)
129
0
        r.used += chunk.second;
130
0
    for (const auto& chunk: chunks_free)
131
0
        r.free += chunk.second->first;
132
0
    r.total = r.used + r.free;
133
0
    return r;
134
0
}
135
136
#ifdef ARENA_DEBUG
137
static void printchunk(void* base, size_t sz, bool used) {
138
    std::cout <<
139
        "0x" << std::hex << std::setw(16) << std::setfill('0') << base <<
140
        " 0x" << std::hex << std::setw(16) << std::setfill('0') << sz <<
141
        " 0x" << used << std::endl;
142
}
143
void Arena::walk() const
144
{
145
    for (const auto& chunk: chunks_used)
146
        printchunk(chunk.first, chunk.second, true);
147
    std::cout << std::endl;
148
    for (const auto& chunk: chunks_free)
149
        printchunk(chunk.first, chunk.second->first, false);
150
    std::cout << std::endl;
151
}
152
#endif
153
154
/*******************************************************************************/
155
// Implementation: Win32LockedPageAllocator
156
157
#ifdef WIN32
158
/** LockedPageAllocator specialized for Windows.
159
 */
160
class Win32LockedPageAllocator: public LockedPageAllocator
161
{
162
public:
163
    Win32LockedPageAllocator();
164
    void* AllocateLocked(size_t len, bool *lockingSuccess) override;
165
    void FreeLocked(void* addr, size_t len) override;
166
    size_t GetLimit() override;
167
private:
168
    size_t page_size;
169
};
170
171
Win32LockedPageAllocator::Win32LockedPageAllocator()
172
{
173
    // Determine system page size in bytes
174
    SYSTEM_INFO sSysInfo;
175
    GetSystemInfo(&sSysInfo);
176
    page_size = sSysInfo.dwPageSize;
177
}
178
void *Win32LockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
179
{
180
    len = align_up(len, page_size);
181
    void *addr = VirtualAlloc(nullptr, len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
182
    if (addr) {
183
        // VirtualLock is used to attempt to keep keying material out of swap. Note
184
        // that it does not provide this as a guarantee, but, in practice, memory
185
        // that has been VirtualLock'd almost never gets written to the pagefile
186
        // except in rare circumstances where memory is extremely low.
187
        *lockingSuccess = VirtualLock(const_cast<void*>(addr), len) != 0;
188
    }
189
    return addr;
190
}
191
void Win32LockedPageAllocator::FreeLocked(void* addr, size_t len)
192
{
193
    len = align_up(len, page_size);
194
    memory_cleanse(addr, len);
195
    VirtualUnlock(const_cast<void*>(addr), len);
196
}
197
198
size_t Win32LockedPageAllocator::GetLimit()
199
{
200
    size_t min, max;
201
    if(GetProcessWorkingSetSize(GetCurrentProcess(), &min, &max) != 0) {
202
        return min;
203
    }
204
    return std::numeric_limits<size_t>::max();
205
}
206
#endif
207
208
/*******************************************************************************/
209
// Implementation: PosixLockedPageAllocator
210
211
#ifndef WIN32
212
/** LockedPageAllocator specialized for OSes that don't try to be
213
 * special snowflakes.
214
 */
215
class PosixLockedPageAllocator: public LockedPageAllocator
216
{
217
public:
218
    PosixLockedPageAllocator();
219
    void* AllocateLocked(size_t len, bool *lockingSuccess) override;
220
    void FreeLocked(void* addr, size_t len) override;
221
    size_t GetLimit() override;
222
private:
223
    size_t page_size;
224
};
225
226
PosixLockedPageAllocator::PosixLockedPageAllocator()
227
0
{
228
    // Determine system page size in bytes
229
#if defined(PAGESIZE) // defined in limits.h
230
    page_size = PAGESIZE;
231
#else                   // assume some POSIX OS
232
0
    page_size = sysconf(_SC_PAGESIZE);
233
0
#endif
234
0
}
235
236
void *PosixLockedPageAllocator::AllocateLocked(size_t len, bool *lockingSuccess)
237
0
{
238
0
    void *addr;
239
0
    len = align_up(len, page_size);
240
0
    addr = mmap(nullptr, len, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
241
0
    if (addr == MAP_FAILED) {
242
0
        return nullptr;
243
0
    }
244
0
    if (addr) {
245
0
        *lockingSuccess = mlock(addr, len) == 0;
246
#if defined(MADV_DONTDUMP) // Linux
247
        madvise(addr, len, MADV_DONTDUMP);
248
#elif defined(MADV_NOCORE) // FreeBSD
249
        madvise(addr, len, MADV_NOCORE);
250
#endif
251
0
    }
252
0
    return addr;
253
0
}
254
void PosixLockedPageAllocator::FreeLocked(void* addr, size_t len)
255
0
{
256
0
    len = align_up(len, page_size);
257
0
    memory_cleanse(addr, len);
258
0
    munlock(addr, len);
259
0
    munmap(addr, len);
260
0
}
261
size_t PosixLockedPageAllocator::GetLimit()
262
0
{
263
0
#ifdef RLIMIT_MEMLOCK
264
0
    struct rlimit rlim;
265
0
    if (getrlimit(RLIMIT_MEMLOCK, &rlim) == 0) {
266
0
        if (rlim.rlim_cur != RLIM_INFINITY) {
267
0
            return rlim.rlim_cur;
268
0
        }
269
0
    }
270
0
#endif
271
0
    return std::numeric_limits<size_t>::max();
272
0
}
273
#endif
274
275
/*******************************************************************************/
276
// Implementation: LockedPool
277
278
LockedPool::LockedPool(std::unique_ptr<LockedPageAllocator> allocator_in, LockingFailed_Callback lf_cb_in)
279
0
    : allocator(std::move(allocator_in)), lf_cb(lf_cb_in)
280
0
{
281
0
}
282
283
0
LockedPool::~LockedPool() = default;
284
285
void* LockedPool::alloc(size_t size)
286
49.9k
{
287
49.9k
    std::lock_guard<std::mutex> lock(mutex);
288
289
    // Don't handle impossible sizes
290
49.9k
    if (size == 0 || size > ARENA_SIZE)
291
0
        return nullptr;
292
293
    // Try allocating from each current arena
294
49.9k
    for (auto &arena: arenas) {
295
49.9k
        void *addr = arena.alloc(size);
296
49.9k
        if (addr) {
297
49.9k
            return addr;
298
49.9k
        }
299
49.9k
    }
300
    // If that fails, create a new one
301
0
    if (new_arena(ARENA_SIZE, ARENA_ALIGN)) {
302
0
        return arenas.back().alloc(size);
303
0
    }
304
0
    return nullptr;
305
0
}
306
307
void LockedPool::free(void *ptr)
308
49.9k
{
309
49.9k
    std::lock_guard<std::mutex> lock(mutex);
310
    // TODO we can do better than this linear search by keeping a map of arena
311
    // extents to arena, and looking up the address.
312
49.9k
    for (auto &arena: arenas) {
313
49.9k
        if (arena.addressInArena(ptr)) {
314
49.9k
            arena.free(ptr);
315
49.9k
            return;
316
49.9k
        }
317
49.9k
    }
318
0
    throw std::runtime_error("LockedPool: invalid address not pointing to any arena");
319
49.9k
}
320
321
LockedPool::Stats LockedPool::stats() const
322
0
{
323
0
    std::lock_guard<std::mutex> lock(mutex);
324
0
    LockedPool::Stats r{0, 0, 0, cumulative_bytes_locked, 0, 0};
325
0
    for (const auto &arena: arenas) {
326
0
        Arena::Stats i = arena.stats();
327
0
        r.used += i.used;
328
0
        r.free += i.free;
329
0
        r.total += i.total;
330
0
        r.chunks_used += i.chunks_used;
331
0
        r.chunks_free += i.chunks_free;
332
0
    }
333
0
    return r;
334
0
}
335
336
bool LockedPool::new_arena(size_t size, size_t align)
337
0
{
338
0
    bool locked;
339
    // If this is the first arena, handle this specially: Cap the upper size
340
    // by the process limit. This makes sure that the first arena will at least
341
    // be locked. An exception to this is if the process limit is 0:
342
    // in this case no memory can be locked at all so we'll skip past this logic.
343
0
    if (arenas.empty()) {
344
0
        size_t limit = allocator->GetLimit();
345
0
        if (limit > 0) {
346
0
            size = std::min(size, limit);
347
0
        }
348
0
    }
349
0
    void *addr = allocator->AllocateLocked(size, &locked);
350
0
    if (!addr) {
351
0
        return false;
352
0
    }
353
0
    if (locked) {
354
0
        cumulative_bytes_locked += size;
355
0
    } else if (lf_cb) { // Call the locking-failed callback if locking failed
356
0
        if (!lf_cb()) { // If the callback returns false, free the memory and fail, otherwise consider the user warned and proceed.
357
0
            allocator->FreeLocked(addr, size);
358
0
            return false;
359
0
        }
360
0
    }
361
0
    arenas.emplace_back(allocator.get(), addr, size, align);
362
0
    return true;
363
0
}
364
365
LockedPool::LockedPageArena::LockedPageArena(LockedPageAllocator *allocator_in, void *base_in, size_t size_in, size_t align_in):
366
0
    Arena(base_in, size_in, align_in), base(base_in), size(size_in), allocator(allocator_in)
367
0
{
368
0
}
369
LockedPool::LockedPageArena::~LockedPageArena()
370
0
{
371
0
    allocator->FreeLocked(base, size);
372
0
}
373
374
/*******************************************************************************/
375
// Implementation: LockedPoolManager
376
//
377
LockedPoolManager::LockedPoolManager(std::unique_ptr<LockedPageAllocator> allocator_in):
378
0
    LockedPool(std::move(allocator_in), &LockedPoolManager::LockingFailed)
379
0
{
380
0
}
381
382
bool LockedPoolManager::LockingFailed()
383
0
{
384
    // TODO: log something but how? without including util.h
385
0
    return true;
386
0
}
387
388
void LockedPoolManager::CreateInstance()
389
0
{
390
    // Using a local static instance guarantees that the object is initialized
391
    // when it's first needed and also deinitialized after all objects that use
392
    // it are done with it.  I can think of one unlikely scenario where we may
393
    // have a static deinitialization order/problem, but the check in
394
    // LockedPoolManagerBase's destructor helps us detect if that ever happens.
395
#ifdef WIN32
396
    std::unique_ptr<LockedPageAllocator> allocator(new Win32LockedPageAllocator());
397
#else
398
0
    std::unique_ptr<LockedPageAllocator> allocator(new PosixLockedPageAllocator());
399
0
#endif
400
0
    static LockedPoolManager instance(std::move(allocator));
401
0
    LockedPoolManager::_instance = &instance;
402
0
}